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Abstract 

With the growing demand for fit-for-purpose surveys to save cost and time by not using rigorous data 

collection methods for producing special subpopulation estimates, old issues of whether suitable 

inferences can be made from purposive or nonprobability samples are again at the forefront. For 

purposive samples, design-based methods are clearly not suitable. There is, however, the possibility of 

using model-based methods, but they assume the design to be non-informative (i.e., the model is assumed 

to hold for the sample) so that an optimal prediction of the unseen total (or the remainder) can be made 

from the seen under the model. This assumption is in general not tenable in practice. In addition to this 

concern, another concern with any model-based method is that it is subject to potential misspecification of 

the model mean resulting in bias even if the design is non-informative. To overcome these concerns, an 

alternative approach termed “model-over-design” (MOD) integration for a simplified problem is proposed 

under the joint design-model randomization when the purposive sample is available as a supplement to 

the core probability sample, although in practice it sometimes could be larger than the core sample. A 

design-based estimate such as a generalized regression estimator for the population total is first 

constructed using the probability sample, which uses the synthetic estimator based on the systematic part 

of the model mean containing fixed parameters, and then corrects it for the total model error 

corresponding to the random part of the model. Next, the above model-error correction is improved by 

using a model-based estimator from the additional seen observations in the purposive sample. We remark 

that while the initial probability sample is used for both estimation of model parameters to obtain a 

synthetic estimator and for estimation or prediction of the total model-error, the purposive supplement is 

only used to improve the model-error correction from the additional seen units. Under regularity 

conditions, the resulting estimator is consistent and its mean squared error can be estimated using Taylor 

linearization under the joint randomization of man-made probability sample design, nature-made 

purposive sample design, and the model for the finite population. Potential applications to NORC’s 

AmeriSpeak Panel survey with opt-in or nonprobability supplements are briefly described. Considerations 

of MOD integration also lead to potential solutions to the problems of making inferences from a single 

purposive sample or from a single probability sample with high nonresponse. 

Key Words: Fit-for-purpose samples; Informative designs; Joint design-model-based inference; 

Nonprobability or purposive samples; Probability samples; Selection bias 
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1. Introduction 

There is a resurgence of interest and controversy among practitioners in the feasibility of making valid 

inferences from purposive or nonprobability samples in the 21st century, even though a similar 

controversy in the early 20th century was addressed in the fundamental paper by Neyman (1934), who 

emphasized the need of probability samples and randomization-based inference in survey sampling, and 

in the contributions to the theory of probability-based survey sampling in the early books by Hansen, 

Hurvitz, and Madow (1953) and Cochran (1953). The main reason for such a renewed interest in 

purposive samples is the desire to obtain more precise estimators than the commonly used design-based 

estimators, such as a generalized regression (GREG) estimator, when dealing with lower-level 

geographies or small subpopulations. This is a very practical problem that arises in using low-cost big 

data (such as administrative data, registries, and other extant data) and data from fit-for-purpose surveys 

that do not adhere to rigorous probability sampling protocols in design and data collection as an 

alternative to the costly option of increasing the sample size of traditional probability surveys.  

In this paper, use of the term “purposive sample” is preferred over the term “nonprobability sample” 

because the nonprobability sample (to be denoted by 𝑠𝑠∗) can be perceived as a conceptual nature-made 

probability sample (in contrast to the man-made sample design) with unknown selection probabilities 

𝜋𝜋𝑘𝑘∗’s for units k in the target universe U; here 𝜋𝜋𝑘𝑘∗  can be 0 for units omitted on purpose leading to 

undercoverage of U, and is likely to be strictly less than 1 in the case of self-selection due to unit 

nonresponse, which is indistinguishable from noncontact with the sampling unit. The recent American 

Association for Public Opinion Research (AAPOR) Task Report (Baker et al., 2013) shows clearly the 

conundrum in using purposive samples for the following reasons. On the one hand, use of purposive 

samples is rather attractive as it promotes use of low-cost extant data or other data such as internet opt-in 

panel data to obtain more detailed information about small subpopulations and specialized domains. On 

the other hand, there is the conceptual problem in its representativeness of the target universe resulting in 

biased estimates, and the lack of any reasonable randomization framework for measuring precision of 

resulting estimates without making strong untestable assumptions. In this paper, we attempt to provide a 

solution by first reviewing the assumptions underlying the two basic principled approaches to inference 

from probability samples in surveys—design-based using the probability sample 𝑠𝑠 given the target 

universe U (Hansen and Hurvitz, 1943; Narain, 1951; Horvitz and Thompson, 1952; Särndal, 1980) and 

model-based given the particular probability sample (𝑠𝑠) as in Royall (1970, 1976) and Valliant, Dorfman, 

and Royall (2000). We then propose a solution for a simplified problem in which the purposive sample 
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(𝑠𝑠∗) serves as a supplement to the core probability sample 𝑠𝑠 rather than the problem of making inference 

from 𝑠𝑠∗ alone. 

The main contribution of the proposed approach for integrating 𝑠𝑠 and 𝑠𝑠∗ can be summarized as follows. 

For efficient estimation, models are often used to incorporate auxiliary information from multiple sources 

such as administrative data, censuses, and related sample surveys. In the context of using models for 

estimating finite population quantities such as totals, models refer to superpopulation models governing 

selection of the finite population under consideration. As is commonly done in a model-based approach, 

the assumed model for the finite population is taken as a linear regression model. Now with 𝑠𝑠∗, there are 

obvious concerns about representativeness and selection bias since the underlying nature-made random 

mechanism for 𝑠𝑠∗ is unknown. To address these concerns and in the interest of avoiding strong model 

assumptions and possible bias due to model misspecification, we first propose to use only the probability 

sample (𝑠𝑠) to estimate fixed model parameters. The estimated regression parameters are then used to 

obtain the synthetic estimator; i.e., total of the systematic part of the model for the study variable Next, 

given the regression parameters, instead of simply using the (weighted) observed model errors from 𝑠𝑠 for 

estimating the total model error (this is the random part of the model) as in the case of the commonly used 

GREG estimator of Särndal (1980), we propose to combine it with the additional (unweighted) observed 

model errors provided by 𝑠𝑠∗. The underlying premise is that although 𝑠𝑠∗ may not be deemed fit for 

estimating fixed model parameters due to its selection bias, it does provide valid information about model 

errors from additional observed units, which can be beneficially used for efficiency gains (i.e., variance 

reduction) under a suitable joint randomization framework for the man-made probability sample design 

(𝜋𝜋), nature-made purposive sample (𝜋𝜋∗), and the postulated model (𝜉𝜉) for the finite population.   

Thus, the proposed approach starts with a design-based estimator (such as GREG) using the core 

probability sample 𝑠𝑠, which for large samples has the desirable asymptotic design consistency (ADC) 

property for robustness against possible model misspecifications. It then improves its efficiency without 

increasing the sample size by integrating the model-based estimator of the total model error from the 

purposive supplementary sample 𝑠𝑠∗ under the joint randomization. It relies only on 𝑠𝑠 (and not on 𝑠𝑠∗) for 

any adjustments for biases due to noncoverage or nonresponse but takes advantage of 𝑠𝑠∗ for variance 

efficiency. This approach, termed in this paper as the “model-over-design integration” or MOD-I, builds 

model-based enhancements over the design-based approach. The term “integration” signifies that it uses 

ideas from both design-based and model-based approaches. It uses a nonoptimal combination, on purpose, 

of the two estimates of the total model error so that it can be robust to model misspecification by 

maintaining the ADC property of the basic design-based estimator GREG. In other words, the main 
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reason for the preference of a nonoptimal combination is to avoid overshrinkage of the design-based 

estimator of the total model error to the model-based estimator, which is based on somewhat tenuous 

assumptions. Overshrinkage could happen because the model-based estimator of the total model error 

from 𝑠𝑠∗ tends to have much smaller variance than the design-based estimator from 𝑠𝑠 due to the absence of 

design weights. Besides, the nonoptimal combination allows for the new estimator to have an expansion 

form involving one set of final weights that can be used for other study variables as well.  

We remark that although the MOD-I method does not provide a solution to the original inference problem 

from a single purposive sample 𝑠𝑠∗, it does provide a solution to a simplified version of the original 

problem by assuming that 𝑠𝑠∗ is available as a supplement to 𝑠𝑠 even though in practice it could sometimes 

be larger than 𝑠𝑠. For the simplified problem, there are other methods proposed in the literature that blend 

𝑠𝑠∗ and 𝑠𝑠. Elliott (2009) provides an innovative approach using propensity score modeling to obtain 

pseudo-weights for 𝑠𝑠∗where 𝑠𝑠 is used as the control group and 𝑠𝑠∗ as the treatment group. Another 

innovative approach is due to DiSogra et al. (2011), who use a dual frame approach and sampling weight 

calibration methods where an initial weight of 1 is assigned to 𝑠𝑠∗. Although these are among the few 

serious attempts to address the challenging but important practical problem of blending 𝑠𝑠 and 𝑠𝑠∗, the 

underlying assumptions seem difficult to justify. In all these papers and as is the case in this paper, 𝑠𝑠∗ is 

conceptually treated as a probability sample with an unknown random selection mechanism.  

The organization of this paper is as follows. Section 2 provides background and motivation of the 

proposed approach. In particular, the two basic approaches of design-based and model-based for 

estimation in survey sampling with a single probability sample are first reviewed in detail in order to 

motivate the proposed approach and consider some variants used later on for integration with the 

purposive sample. To this end, we make two basic assumptions (C1 and C2) for unbiased point 

estimation, a third assumption C3 for variance estimation, and a fourth C4 for a simplified variance 

estimation along with the regularity conditions needed for the asymptotic behavior of Horvitz-Thompson 

type estimators in survey sampling (see Fuller, 2009; Section 1.3). For asymptotics, we assume the 

probability sample size 𝑛𝑛 and the population size 𝑁𝑁 go to ∞ such that 𝑛𝑛 𝑁𝑁⁄  goes to 0, but the purposive 

sample size 𝑛𝑛∗ remains bounded. Note that 𝑛𝑛∗ is random in general. The assumptions C1-C4 are: 

C1: The model mean is correctly specified, but other aspects such as the model covariance 

structure may not be. 

C2: Given covariates, the model errors 𝜀𝜀𝑘𝑘’s are uncorrelated with the conceptual selection 

probabilities 𝜋𝜋𝑘𝑘∗  of units in the target universe U that could be selected in the purposive sample. 
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(A similar assumption for the probability sample design 𝜋𝜋 can be made unless the model is 

enlarged to include 𝜋𝜋𝑘𝑘’s as a new covariate.) 

C3: The model covariance structure is correctly specified. 

C4: Given covariates, the products (𝜀𝜀𝑘𝑘𝜀𝜀𝑙𝑙′𝑠𝑠)of model errors corresponding to pairs of units in U 

are uncorrelated with the corresponding conceptual joint selection probabilities 𝜋𝜋𝑘𝑘𝑘𝑘∗  in the 

purposive sample. A similar assumption for 𝜋𝜋 is made. 

Assumptions C1 and C3 are the usual first two moment assumptions to specify a semiparametric model 

for the finite population. Assumption C2 is much weaker than the non-informative design assumption.  

It may be deemed to be satisfied in general because the design 𝜋𝜋∗ for 𝑠𝑠∗ is nature-made. Therefore, 𝜋𝜋𝑘𝑘∗’s 

are expected to be functions of unit covariates or unit profile, and not as complex as in the case of the 

man-made design 𝜋𝜋 for 𝑠𝑠. Thus, C2 would be valid if the model already includes suitable covariates that 

are expected to govern nature’s random mechanism for selection of 𝑠𝑠∗. It is probably reasonable to expect 

that covariates that are good predictors of the study variable 𝑦𝑦 are also good predictors of the inclusion 

probabilities 𝜋𝜋𝑘𝑘∗  under the nature-made design. Assumptions C4 along with C2 capture the essence of 

non-informative designs in order to study the first and second order properties of estimators under  

the model. 

In Section 3, we consider how the two estimates (one each from 𝑠𝑠 and 𝑠𝑠∗) of the total model error can be 

combined under the joint randomization of the superpopulation model (𝜉𝜉), the known probability sample 

design 𝜋𝜋 for 𝑠𝑠, and the unknown random design 𝜋𝜋∗ for 𝑠𝑠∗. Note that under this joint framework, the two 

estimates can be made (approximately) unbiased for the total model error—the common finite population 

parameter, which makes it convenient to compare the new estimator in terms of variance efficiency 

without the burden of bias considerations. The appendix shows how suitable variance estimates of all 

estimators considered can be obtained under the joint random mechanism. (Incidentally, since the 

population total parameter is random, it is customary to use the term “mean squared error (MSE) even 

when the estimator is unbiased. However, we prefer to use the term “variance” to distinguish it from MSE 

when the estimator may be biased.) Analogous to GREG, the proposed estimator can be expressed in an 

expansion form due to the use of a nonoptimal combination, and the original auxiliary control totals for 

GREG continue to be satisfied by the new set of weights. However, unlike the case of dual frame 

samples, the final estimator is not a calibration estimator in the strict sense because there are no suitable 

initial weights that can be attached to the purposive sample. 
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The problem of subpopulation or domain estimation is considered in Section 4. Here MOD-I is especially 

expected to be useful because GREG may not be reliable due to insufficient domain sample size but can 

be made so in combination with a purposive sample from the domain of interest. The question of bias-

variance trade-off in MOD-I is considered in Section 5. An interesting finding is that if C2 is not satisfied, 

the contribution of sample selection bias in 𝑠𝑠∗ is relatively negligible in the model-based estimator of the 

total model error and the corresponding MSE estimator. However, this is not the case if C1 does not hold. 

In this context, limiting shrinkage of the design-based estimator toward the model-based estimator of the 

total model error becomes crucial. Finally, Section 6 contains summary and remarks about how MOD-I 

considerations can lead to potential solutions to the problems of making inferences from a single 

purposive sample or from a probability sample with high nonresponse. 

2. Background and Motivation 

As mentioned in the introduction, purposive surveys such as fit-for-purpose surveys being in demand by 

users for time and cost efficiency do not follow a rigorous probability sampling design protocol. It is 

therefore difficult to obtain theoretically justifiable point estimates and their standard errors from such 

survey data without making strong modeling assumptions. However, with purposive supplements to a 

core probability sample, it is possible to make suitable inferences about the population under 

consideration. The proposed method is motivated from the two basic approaches to estimation that form 

the foundation of survey sampling inference. These are design-based and model-based approaches. In the 

design-based approach, one relies on the likely behavior of sample estimates under the man-made random 

mechanism 𝜋𝜋 of probability sampling from a given finite target population U. On the other hand, in the 

model-based approach, given a sample, one relies on the likely behavior of sample estimates under the 

nature-made random mechanism 𝜉𝜉 governing the creation of the target population from a conceptual 

infinite universe or a superpopulation. 

A commonly used design-based method GREG for estimating population totals consists of first obtaining 

an estimate of the fixed part under a model (i.e., the synthetic part) and then correcting it by adding an 

estimate of the random part (i.e., model error) given by a weighted estimator from observed errors in the 

sample. The model postulated here is a regression model for predicting the outcome of interest by 

auxiliary variables. The synthetic estimator of the population total is simply the sum of model predictions 

based on the systematic part for each individual in the population. The synthetic predictions require 

known values of auxiliaries and estimates of regression coefficients in the model mean function. The 

regression coefficients are estimated by solving weighted estimates of census estimating functions (EFs), 
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where weights refer to inverse of individual selection probabilities in the sample, and census EFs are 

usual quasi-likelihood EFs when the sample is the full finite population. The resulting estimator (GREG) 

is natural to consider in connection with a model-based estimator (to be denoted by PRED as in Brewer, 

2002, signifying the prediction approach of Royall, 1970, 1976) because both use models to start with. 

Here, unlike mainstream statistics, the parameters of interest are not model parameters, but the finite 

population totals involving fixed and random effects or model errors. In the following, we first review 

GREG followed by PRED in some detail for a single probability sample because it lays down the 

necessary theoretical foundation for the proposed estimator. For interesting comparisons of design-based 

and model-based approaches, see Hansen et al. (1983) and Little (2004).  

2.1 Design-based Approach 

Specifically, consider a linear model 𝜉𝜉 for 𝑦𝑦𝑘𝑘 with covariates (𝑥𝑥𝑖𝑖𝑖𝑖)1≤𝑖𝑖≤𝑝𝑝 for the kth unit, 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁,  

given by 

 𝜉𝜉: 𝑦𝑦𝑘𝑘 = 𝑥𝑥𝑘𝑘′ 𝛽𝛽 + 𝜀𝜀𝑘𝑘  , 𝜀𝜀𝑘𝑘~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝜀𝜀2𝑐𝑐𝑘𝑘) (1) 

where 𝛽𝛽 is a p-vector of regression coefficients, 𝑐𝑐𝑘𝑘’s are known constants and 𝑁𝑁 is the finite population 

size. We will assume for convenience that 𝛽𝛽 is known initially, but later on we will substitute it with a 

design-weighted estimator as in GREG based on the probability sample 𝑠𝑠 of size 𝑛𝑛 under design 𝜋𝜋. The 

synthetic estimator of 𝑇𝑇𝑦𝑦 is then given by  

 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽) =  𝑇𝑇𝑥𝑥′𝛽𝛽 (2) 

where 𝑇𝑇𝑥𝑥 = ∑ 𝑥𝑥𝑘𝑘𝑈𝑈  and the finite population total parameter 𝑇𝑇𝑦𝑦 is similarly ∑ 𝑦𝑦𝑘𝑘𝑈𝑈 ; the summation 

notations ∑ 𝑦𝑦𝑘𝑘𝑈𝑈  and ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑈𝑈  will be used interchangeably. The design bias of the synthetic estimator is 

𝑇𝑇𝑥𝑥′𝛽𝛽 − 𝑇𝑇𝑦𝑦 or −∑ 𝜀𝜀𝑘𝑘𝑈𝑈  where 𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽 = 𝜀𝜀𝑘𝑘. The GREG estimator corrects this bias (which is simply 

minus the total model error) by using a design-based unbiased estimator such as Horvitz-Thompson, or 

HT for short. It is given by 

 GREG: 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) =  𝑇𝑇𝑥𝑥′𝛽𝛽 + ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑘𝑘∈𝑠𝑠  (3a) 

 =  𝑡𝑡𝑦𝑦𝑦𝑦 + 𝛽𝛽′(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥) (3b) 

where the design weight 𝑤𝑤𝑘𝑘= 𝜋𝜋𝑘𝑘−1, 𝜋𝜋𝑘𝑘 is the sample inclusion probability of unit 𝑘𝑘, and 𝑡𝑡𝑦𝑦𝑦𝑦, for example, 

is ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 , the HT-estimator. With known 𝛽𝛽, 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) as an estimate of 𝑇𝑇𝑦𝑦 is design, or 𝜋𝜋 −unbiased, 

and is also 𝜋𝜋 −consistent (or ADC) as 𝑛𝑛,𝑁𝑁 get large under general regularity conditions (see the 
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asymptotic framework of Isaki and Fuller, 1982; the book by Fuller, 2009; Section 1.3; and also Kott, 

2009); i.e., with high 𝜋𝜋 −probability, it is close to the true value 𝑇𝑇𝑦𝑦. Here and in what follows, all the 

asymptotic properties are with respect to the mean estimator (such as 𝑁𝑁−1𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔) of the population mean 

𝑁𝑁−1𝑇𝑇𝑦𝑦. It is interesting and important to remark that even if the model mean function is misspecified, the 

GREG estimator remains ADC; i.e., under 𝜋𝜋 −randomization, 𝑁𝑁−1�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝛽𝛽) − 𝑇𝑇𝑦𝑦� = 𝑁𝑁−1(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 −

∑ 𝜀𝜀𝑘𝑘) = 𝑜𝑜𝑝𝑝(1)𝑈𝑈 . This robustness property of GREG is desirable in practice because, as is well known, no 

model is perfect. Note that the model does play an important role in GREG for improving its relative 

efficiency over HT estimators. However, the model’s validity is not vital for its ADC property, and hence 

GREG is also referred to as model-assisted. For the proposed method for combining 𝑠𝑠 and 𝑠𝑠∗, we also 

strive for the ADC property analogous to GREG. 

In practice, the regression parameters are replaced by weighted estimators motivated by census EFs, 

where all the population totals are replaced by HT estimators to obtain sample EFs; see Binder (1983) and 

also Särndal (1980). In particular, the census EFs for 𝛽𝛽 are given by  

 ∑ 𝑥𝑥𝑘𝑘 (𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)/𝑐𝑐𝑘𝑘 𝑘𝑘∈𝑈𝑈 = 0  (4a) 

and the corresponding sample EFs are given by  

 ∑ 𝑥𝑥𝑘𝑘 (𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 𝑘𝑘∈𝑠𝑠 = 0  (4b) 

It is easily seen that 

 𝛽̂𝛽𝑤𝑤 = (∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑥𝑥𝑘𝑘′ 𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 )−1(∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘/𝑐𝑐𝑘𝑘 ) = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊 (5) 

where 𝑊𝑊 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑤𝑤𝑘𝑘)1≤𝑘𝑘≤𝑛𝑛, 𝐶𝐶 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑐𝑐𝑘𝑘)1≤𝑘𝑘≤𝑛𝑛, and 𝑋𝑋 is the 𝑛𝑛 × 𝑝𝑝 matrix of the sample covariate 

values 𝑥𝑥𝑘𝑘’s. Here, the main reason for using sampling weights in (4b) is to make the sample EF 

𝜋𝜋𝜉𝜉 −unbiased for 0, because C2 for 𝜋𝜋 may not be satisfied. The estimator 𝛽̂𝛽𝑤𝑤 is optimal under the joint 

𝜋𝜋𝜋𝜋 −randomization as defined by Godambe and Thompson (1986). However, under 𝜋𝜋 −randomization 

given 𝜉𝜉, it is not optimal in the usual sense; i.e., the regression coefficient 𝛽̂𝛽𝑤𝑤 does not correspond to 

optimal regression in the sense of minimizing the 𝜋𝜋|𝜉𝜉 −variance of the regression estimator about 𝑇𝑇𝑦𝑦. 

Although, GREG with 𝛽̂𝛽𝑤𝑤 (to be denoted by 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 instead of 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔�𝛽̂𝛽𝑤𝑤� ) is no longer unbiased, it 

remains asymptotically design unbiased as well as ADC under general conditions (see Robinson and 

Särndal, 1983). It is also in general more efficient than the HT estimator in view of the observation that 

the model residuals 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽̂𝛽𝑤𝑤 tend to be less variable than 𝑦𝑦𝑘𝑘’s, and 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 yields perfect 



NORC  |  Estimation from Purposive Supplements to Probability Samples by MOD-I: A Model-Over-Design Integration Approach 

NORC WORKING PAPER SERIES  |  9 

estimates (i.e., with no error) of totals of covariates 𝑥𝑥𝑘𝑘’s when 𝑦𝑦𝑘𝑘 is replaced by 𝑥𝑥𝑘𝑘’s. (Note that if 𝛽𝛽 is 

not estimated, the residual 𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽 can be denoted by 𝑒𝑒𝑘𝑘(𝛽𝛽), which will be identical to the model error 

𝜀𝜀𝑘𝑘 if the model mean is not misspecified. This distinction is useful in discussion on bias-robustness in 

Section 6.) The above property of GREG being perfect for estimating 𝑇𝑇𝑥𝑥 is easily seen from the 

calibration form of the GREG estimator as introduced by Deville and Särndal (1992) and is given by 

 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠  ,𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = 1 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 (6) 

where 𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥). Observe that the sample 𝑥𝑥𝑘𝑘-values inflated or deflated by the 

weight adjustments (𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔)1≤𝑘𝑘≤𝑛𝑛 satisfy the auxiliary control totals 𝑇𝑇𝑥𝑥 exactly. Moreover, denoting the 

predicted value 𝑥𝑥𝑘𝑘′ 𝛽̂𝛽𝑔𝑔𝑔𝑔 by 𝑦𝑦�𝑘𝑘, the weighted estimator ∑ 𝑦𝑦�𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  using predicted values matches exactly 

with the direct estimator ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  whenever the unit vector 1𝑛𝑛×1 is in the column space of 𝐶𝐶−1𝑋𝑋—an 

important special case being when 𝑐𝑐𝑘𝑘 is one of the 𝑥𝑥𝑘𝑘′𝑠𝑠 (see Appendix A1). Equivalently, the weighted 

sum of residuals ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠  becomes zero under the above condition on covariates. The built-in 

benchmarking property of GREG residuals to sum to zero when the unit vector is in the column space of 

𝑋𝑋 (commonly satisfied in practice) is attractive for robustification to possible model misspecifications. 

With respect to the precision of GREG, the 𝜋𝜋𝜋𝜋 −variance of 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 about 𝑇𝑇𝑦𝑦 can be approximated well for 

large samples by the 𝜋𝜋|𝜉𝜉 −variance using the Taylor linearization or delta method (see Appendix A2). 

2.2 Model-based Approach 

So far, we considered a design-based estimator GREG, which for large samples has desirable properties 

of ADC in that it remains close to the true population total with high probability and is robust to model 

misspecification in that it remains ADC even if the model is misspecified. The alternative model-based 

estimator PRED (defined below) uses an unweighted estimator of regression coefficients in the model for 

corresponding predictions of the systematic part in the model mean function for each individual in order 

to construct a synthetic estimator of the population total. Analogous to GREG, it then corrects it by 

adding an estimate of the total model error by using an unweighted estimator from observed errors in the 

sample—it only corrects the total model error corresponding to the seen units in 𝑠𝑠. Thus, unlike the 

design-based estimator GREG, the model-based estimator PRED does not rely on sampling weights 

because it considers the likely behavior of the estimate given a particular observed sample.  

PRED:   We now consider in some detail the model-based estimator PRED proposed by Royall (1970, 

1976), which uses the prediction approach for estimating model errors under 𝜉𝜉 given 𝜋𝜋; i.e., given the 

sample 𝑠𝑠. The formulation of the PRED estimator will be useful for integrating information about the 
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additional seen units from 𝑠𝑠∗ because the observed sample under the model-based approach is not 

required to have a known probability sample design. Given 𝛽𝛽, the PRED estimator of 𝑇𝑇𝑦𝑦 is given by 

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝(𝛽𝛽) = ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑠𝑠 + ∑ (𝑥𝑥𝑘𝑘′ 𝛽𝛽𝑘𝑘∈𝑈𝑈∖𝑠𝑠 + 0) (7) 

where the first sum on the right is the sum of the observed 𝑦𝑦 −values from the seen units, and the second 

sum is the predicted value under the model for the remainder or unseen units; i.e., the set 𝑈𝑈 ∖ 𝑠𝑠 of units 

from the population 𝑈𝑈 that were not selected in 𝑠𝑠. The 𝑥𝑥𝑘𝑘′ 𝛽𝛽 term in the second sum on the right is the 

predictor of the fixed part (or the model mean) in the unknown 𝑦𝑦𝑘𝑘 under the model, and 0 signifies the 

best linear unbiased predictor (BLUP) of the model error 𝜀𝜀𝑘𝑘 for the unseen because all the error terms are 

uncorrelated. If the error terms 𝜀𝜀𝑘𝑘’s were correlated, then BLUP of 𝜀𝜀𝑘𝑘 for the unseen could have been 

improved by using the observed values of 𝜀𝜀𝑘𝑘’s for the seen units in the sample. The estimator 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝(𝛽𝛽) 

can alternatively be expressed as  

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝(𝛽𝛽) =  (𝑇𝑇𝑥𝑥 − ∑ 𝑥𝑥𝑘𝑘𝑘𝑘∈𝑠𝑠 )′𝛽𝛽 + ∑ 𝑦𝑦𝑘𝑘𝑘𝑘∈𝑠𝑠  (8a) 

 = 𝑇𝑇𝑥𝑥′𝛽𝛽 +  ∑ 𝜀𝜀𝑘𝑘𝑘𝑘∈𝑠𝑠  (8b) 

which looks very similar to the expression (3a) for GREG except that the predictions for model errors in 

the sample are not weighted. Note that in the case of GREG, the predicted value of the remainder is taken 

as ∑ 𝑥𝑥𝑘𝑘′ 𝛽𝛽𝑈𝑈∖𝑠𝑠 + (∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 ). The weighted sum of model errors, or residuals ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘 used in 

GREG under 𝜋𝜋 −randomization, provides an unbiased adjustment (through the commonly used HT 

estimator) for the design bias (−∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) in the synthetic estimator 𝑇𝑇𝑥𝑥′𝛽𝛽, while the unweighted sum ∑ 𝜀𝜀𝑘𝑘𝑠𝑠  

used in PRED under 𝜉𝜉 −randomization provides an unbiased prediction (optimal under the model) of the 

total model error ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 . 

In the discussion so far, the parameters 𝛽𝛽 were assumed to be known. In practice, they are unknown and 

are estimated differently in PRED from GREG. Under GREG, 𝛽̂𝛽𝑤𝑤 is based on weighted sample EFs, 

which, in turn, give rise to several desirable properties as mentioned earlier, including the ADC of GREG 

when C1 holds but C2 may not. Under PRED, however, the regression parameters are estimated by  

 𝛽̂𝛽𝑢𝑢 = (∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑥𝑥𝑘𝑘′ /𝑐𝑐𝑘𝑘 )−1(∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑦𝑦𝑘𝑘/𝑐𝑐𝑘𝑘 ) = (𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1𝑋𝑋′𝐶𝐶−1𝑦𝑦 (9) 

which is derived from best linear unbiased EFs under the model and does not involve design weights. 

Under 𝜉𝜉 −randomiztion given 𝜋𝜋 and general regularity conditions, the PRED estimator with 𝛽̂𝛽𝑢𝑢 (to be 

denoted by 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝) has desirable properties in that it is unbiased, consistent, and optimal (in the sense of 

minimum variance) if the model holds for the sample. 
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Interestingly, analogous to the GREG expression (6), PRED can also be expressed as an expansion 

estimator with adjustment factors 𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 but without design weights 𝑤𝑤𝑘𝑘. We have, 

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑦𝑦𝑘𝑘𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘∈𝑠𝑠  ,   𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 =  1 + 𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 (10) 

where 𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥), and 𝑡𝑡𝑥𝑥𝑥𝑥 is the unweighted sample sum ∑ 𝑥𝑥𝑘𝑘𝑠𝑠 . In general, if the 

variance of the model error is heteroscedastic, the adjustment factor 𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 depends on it because 𝛽̂𝛽𝑢𝑢 does. 

Therefore, unlike GREG, the weight adjustment factor may vary with the outcome variable 𝑦𝑦. A useful 

way to interpret (10) is in the sense of calibrating the initial weights of 1 in 𝑠𝑠 by the adjustment factor 

𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 such that exact totals 𝑇𝑇𝑥𝑥 are reproduced when 𝑦𝑦 is replaced by 𝑥𝑥. However, the expression (10) of 

𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 is not strictly a calibration estimator in the sense of Deville and Särndal (1992) because (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥), 

the difference of the vector of population totals and the corresponding sample sums on which the weight 

adjustment factor depends, is not a zero function vector; i.e., its expectation is not zero under 

𝜉𝜉|𝜋𝜋 −randomization. This implies that the known totals 𝑇𝑇𝑥𝑥 are not truly calibration control totals. A 

𝜉𝜉|𝜋𝜋 −variance estimate of 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 about 𝑇𝑇𝑦𝑦 is provided in Appendix A3. 

The fundamental assumptions underlying the model-based approach are that the model is correctly 

specified for the population (C1 and C3 corresponding to the first two moments are sufficient for our 

purpose), and the sampling design is non-informative for the model. Here the randomization is with 

respect to the 𝜉𝜉 −distribution conditional on the sample design 𝜋𝜋. The non-informative design assumption 

requires that the joint distribution of the outcome variable in the population given the auxiliaries does not 

depend on the random variables indicating inclusion or exclusion of population units in the sample. In 

fact, it is sufficient to assume C2 and C4 for our purpose. However, even the weaker set of assumptions is 

quite strong and is generally not expected to be satisfied in practice because it is not feasible to include all 

key design variables (that govern inclusion of units in the sample) in the model as auxiliaries that are 

deemed to be correlated with the study variable. The main reason is that the man-made sampling design 

can be quite complex in that, besides stratification and disproportionate sample allocation, samples within 

strata may be drawn in stages with varying selection probabilities of clusters of units at any given stage 

depending on the size variable in the interest of over- or under-sampling of special domains. Even in 

situations where important design variables could be included in the model, the covariate totals needed for 

prediction with linear models might not be available for design variables; e.g., such totals are usually not 

known for non-selected clusters in multistage designs. Besides, if the model of interest is nonlinear, as is 

often the case with discrete variables, use of model-based prediction requires even more detailed 

information such as the unit-level information for all the covariates in the population. This problem does 
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not arise with GREG because the role of model is secondary, and therefore, even for discrete variables, 

one can use linear models, although it is not strictly correct because the range restrictions on model means 

and errors imposed by nonlinear models are not satisfied. 

If the design is informative due to C2 not being satisfied, there is design bias (also known as selection 

bias) in the model-based estimator even though for units in the finite population 𝑈𝑈, the model mean is 

correctly specified; i.e., C1 holds. It is possible to correct this problem by including 𝜋𝜋𝑘𝑘 as a covariate in 

the 𝜉𝜉 −model, but still the model may not hold for 𝑠𝑠 because the model covariance structure for the 

sampled units may not be correctly specified. Incidentally, with the inclusion of the new covariate 𝜋𝜋𝑘𝑘, the 

model (1) changes with new 𝛽𝛽 −parameters and the model errors 𝜀𝜀’s, but this change does not invalidate 

the original model because the old model mean is marginal of the new model mean. (Note also that with 

𝜋𝜋𝑘𝑘 as a covariate, we don’t need to know these for all units in U for computing the synthetic estimator 

under PRED as it is sufficient to know ∑ 𝜋𝜋𝑘𝑘𝑈𝑈 , which is 𝑛𝑛 for fixed sample design or 𝐸𝐸𝜋𝜋(𝑛𝑛) for random 

sample designs and which can be estimated by 𝑛𝑛.) Besides the above problem of selection bias, there may 

be model bias due to misspecification of the model mean. The above two concerns (biases due to 

informativeness of the design and due to model misspecification) for probability samples get magnified 

with purposive samples because the underlying conceptual sampling design (𝜋𝜋∗) for the purposive sample 

is not even known. Nevertheless, a good understanding of the implications of model and design 

assumptions on model-based estimators is important for finding a suitable solution to the problem of 

integrating 𝑠𝑠∗with 𝑠𝑠. The main reason for this is that the model-based methods do not inherently require 

knowledge of the underlying probability sample design. 

2.3 Motivation for Integration of Design-based and Model-based Approaches 

In view of the desirable ADC property of GREG making it robust to model misspecification, our goal is 

to preserve the ADC property of GREG while integrating it with the model-based estimator PRED. The 

ultimate goal is to increase its efficiency for population total estimation in general and for subpopulation 

or domain estimation in particular, which suffer from the problem of insufficient number of observations. 

With this in mind, from expressions (3a) and (8b) for GREG and PRED, respectively, it is observed that if 

common values of the 𝛽𝛽 −parameters are used in both estimators, then the synthetic estimates for the two 

become identical, but we have two different estimates of the same total model error. So it may be possible 

to improve the prediction of the total model error ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  by combining the two estimates under 

𝜋𝜋𝜉𝜉 −randomization. This is the underlying premise of the proposed integration of ideas from design-

based and model-based approaches, which is quite different from the usual combination of two estimators 

under either a design-based (𝜋𝜋|𝜉𝜉) or a model-based approach (𝜉𝜉|𝜋𝜋). It is introduced in the next section 
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and termed “model-over-design integration” (MOD-I) because it starts with GREG—a design-based 

estimator as the basic estimator and then improves its prediction of the random part by bringing over the 

PRED-type estimator of the random part. 

With the above motivation, we first construct a new estimator termed “prediction of remainder for 

enhancing generalized regression” (PREG for short), which uses the design-based synthetic estimator of 

GREG, but the model-based estimator of the total model error from PRED modified by using 𝛽̂𝛽𝑤𝑤 in place 

of 𝛽̂𝛽𝑢𝑢. Note that the estimator 𝛽̂𝛽𝑤𝑤 is preferable to 𝛽̂𝛽𝑢𝑢 for reasons mentioned earlier. Thus, the PREG 

estimator (to be denoted by 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝) is defined as 

 PREG:     𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑇𝑇𝑥𝑥′𝛽̂𝛽𝑤𝑤 +  ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠  (11) 

Clearly, the only difference between GREG and PREG is that PREG uses unweighted residuals. 

Analogous to (6), the expansion form of PREG is given by 

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑘𝑘∈𝑠𝑠 ,     𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝑘𝑘 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝  (12) 

where 𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥). An estimator of the variance of 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 about 𝑇𝑇𝑦𝑦 is given in 

Appendix A4. 

Having now PREG in addition to GREG, it is natural to ask how to combine the two estimates of the total 

model error to obtain a new estimate that is more efficient than GREG. Here, we prefer a nonoptimal 

combination that diminishes the influence of PREG in order to avoid potential biases of PREG. To this 

end, we first assume C1; i.e., while the full model with the mean and covariance structure could be 

misspecified, the model mean is at least correctly specified. Specifically, 𝐸𝐸𝜉𝜉((𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽)|𝑥𝑥𝑘𝑘) =

0, so that ∑ 𝜀𝜀𝑘𝑘𝑠𝑠  has a chance to be unbiased for ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  under the joint 𝜋𝜋𝜋𝜋 −

randomization. In other words, we want 𝐸𝐸𝜋𝜋𝜋𝜋((∑ 𝜀𝜀𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘)𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁) =

0. However, this may not be true unless C2 for 𝜋𝜋 is satisfied for the sample; i.e., 

 𝐸𝐸𝜋𝜋𝜋𝜋�(∑ 𝜀𝜀𝑘𝑘U 1𝑘𝑘∈𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁)�= 

 𝐸𝐸𝜉𝜉((∑ 𝜀𝜀𝑘𝑘U 𝜋𝜋𝑘𝑘 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 |𝑥𝑥𝑘𝑘 , 1 ≤ 𝑘𝑘 ≤ 𝑁𝑁) = 0 (13a) 

where ∑ 𝜀𝜀𝑘𝑘U 1𝑘𝑘∈𝑠𝑠 = ∑ 𝜀𝜀𝑘𝑘𝑠𝑠 . The above condition holds if 𝐸𝐸𝜋𝜋|𝜉𝜉(1𝑘𝑘∈𝑠𝑠|𝜀𝜀𝑘𝑘 ,𝑥𝑥𝑘𝑘) does not depend on 𝑦𝑦𝑘𝑘 

through 𝜀𝜀𝑘𝑘; i.e., given 𝑥𝑥𝑘𝑘 , the selection probability 𝜋𝜋𝑘𝑘 does not depend on 𝜀𝜀𝑘𝑘. In other words,  

 𝐸𝐸𝜉𝜉(𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘|𝑥𝑥𝑘𝑘) = 𝐸𝐸𝜉𝜉(𝜀𝜀𝑘𝑘|𝑥𝑥𝑘𝑘)𝐸𝐸𝜉𝜉(𝜋𝜋𝑘𝑘|𝑥𝑥𝑘𝑘)  (13b) 
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so that C2 holds for 𝜋𝜋. This will be the case if 𝜋𝜋𝑘𝑘’s are functions of 𝑥𝑥𝑘𝑘’s, which is unlikely but can be 

easily satisfied by enlarging the model to include 𝜋𝜋𝑘𝑘’s as values of an extra covariate. Now, with the 

enlarged model, both ∑ 𝜀𝜀𝑘𝑘𝑠𝑠  and ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  are 𝜋𝜋𝜋𝜋 −unbiased for ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 , and therefore, it makes it possible 

to combine the two under a common randomization scheme without the burden of accounting for bias. 

Incidentally, to satisfy C2, introduction of 𝜋𝜋𝑘𝑘 (a design-specific feature) as a covariate may seem 

somewhat an artifact to reach a specific goal because the sampling design refers to the finite population 

and not to the superpopulation, although it may nevertheless serve as a good covariate in its own right. 

Above considerations will also pave the way for using 𝑠𝑠∗ in improving estimators from 𝑠𝑠 because the 

unbiasedness of model-based estimators does not require knowledge of the random mechanism under a 

probability sample as long as C2 holds. In fact, as mentioned in the introduction, C2 is likely to hold for 

𝑠𝑠∗ without introducing 𝜋𝜋𝑘𝑘∗’s in the model as another covariate because the nature-made design 𝜋𝜋∗ is not 

expected to be as complex as the man-made design 𝜋𝜋. This anticipated property of 𝜋𝜋∗ is the basis for 

defining another estimator termed “supplement-sample for PREG estimation” (S-PREG for short and 

denoted by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠) needed for MOD-integration of 𝑠𝑠∗ and 𝑠𝑠, and is given by 

 S-PREG:  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑇𝑇𝑥𝑥′𝛽̂𝛽𝑤𝑤 + ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠∗  (14) 

Letting 𝑡𝑡𝑥𝑥𝑢𝑢∗ = ∑ 𝑥𝑥𝑘𝑘𝑠𝑠∗ , the expansion form of the S-PREG estimator is given by  

 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + ∑ 𝑦𝑦𝑘𝑘𝑠𝑠∗ ,      𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑠𝑠𝑠𝑠𝑠𝑠 (15) 

where 𝜂̂𝜂𝑠𝑠𝑠𝑠𝑠𝑠 = (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗). An estimator of the variance of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 about 𝑇𝑇𝑦𝑦 under the joint 

𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization is given in Appendix A5. In the next section, we consider the problem of 

integrating two samples—𝑠𝑠 with the supplement 𝑠𝑠∗; i.e., how to integrate the two estimators of the total 

model error from GREG and S-PREG for improving the GREG efficiency. With 𝑠𝑠 and 𝑠𝑠∗, it is tempting 

to combine the three estimators of the total model error corresponding to GREG, PREG, and S-PREG, 

respectively, but 𝜋𝜋𝜋𝜋 −unbiasedness of PREG requires enlarging the model in order to satisfy C2 for 𝜋𝜋, 

which, in turn, requires knowledge of 𝜋𝜋𝑘𝑘’s for units in 𝑠𝑠∗, and this may not be available for all units (see 

Section 6 for more comments). A summary of all estimators (new and old) considered in this paper is 

presented in Table 1. 
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3. MOD-Integration of a Purposive Supplement to a 
Probability Sample 

For MOD-I, the conditions C1 and C3 for 𝜉𝜉 and C2 and C4 for 𝜋𝜋∗ are assumed to hold as mentioned in 

the introduction. The validity of C2, unlike the case of the probability sample 𝑠𝑠, seems quite plausible 

because the individual characteristics that govern the nature-made design 𝜋𝜋∗ for self- or purposive 

selection of an individual from 𝑈𝑈 may be known to the analyst, and are likely to be included as covariates 

in the model because they typically will be deemed to be correlated with the outcome variables of interest. 

In Section 5, the impact on bias and variance due to departures from the above conditions is considered. 

The sampling designs for 𝑠𝑠∗and 𝑠𝑠 are assumed to be independent, and, therefore, in general, there may be 

an overlap between the two. The new predictor ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗  used in S-PREG of the total model error based on 

the new seen units in 𝑠𝑠∗ can be used to improve the total model error prediction from GREG; this time, 

however, under the joint 𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization. We can now define the proposed estimator under MOD-

I, termed “supplement-sample for integrated PREG” (SI-PREG for short and denoted by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠),  

as follows: 

SI-PREG:  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 = �1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠  (16a) 

= 𝑇𝑇𝑥𝑥′𝛽̂𝛽𝑤𝑤 + ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠∗ − ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 � (16b) 

where the coefficient 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is obtained in a nonoptimal manner for stability and for obtaining an expansion 

form of the estimator. (Incidentally, an optimal choice of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 can be obtained by minimizing the variance 

of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑦𝑦, which is given by minus the optimal regression coefficient of (∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) on 

(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ).) We remark that for estimation of the total ∑ 𝜀𝜀𝑘𝑘𝑈𝑈  through regression, the estimator 

𝛽̂𝛽𝑤𝑤 can be treated as fixed because the fixed parameters 𝛽𝛽 and random parameters 𝜀𝜀𝑘𝑘’s are distinct. For 

nonoptimal regression in SI-PREG, we use anticipated variances and covariances (Isaki and Fuller, 1982) 

about 𝑇𝑇𝑦𝑦 under the joint 𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization. Thus, this integration of the two estimators is nonoptimal 

because 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is obtained under the working assumption that the model holds for both samples. This is 

analogous to the assumption used in an alternate derivation of GREG using nonoptimal regression 

(weighted SRS-type variances and covariances) of 𝑡𝑡𝑦𝑦𝑦𝑦 on (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥) in estimating 𝛽𝛽 by 𝛽̂𝛽𝑤𝑤 (see Singh, 

1996). Thus, the coefficient 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 can be obtained as 

 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 (⁄ 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠) (17) 
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where 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 denotes a working variance estimate of GREG, assuming 𝛽𝛽 is given and later substituted by 

𝛽̂𝛽𝑤𝑤, and 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 is defined similarly. We have from Appendix A6, 

 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ 𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘  , 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜎𝜎�𝜀𝜀𝜀𝜀2 (∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ) , (18) 

where 𝜎𝜎�𝜀𝜀𝜀𝜀2 =  ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔
2 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1𝑠𝑠 ∑ 𝑤𝑤𝑘𝑘𝑠𝑠⁄ . The anticipated covariance of GREG and S-PREG given 𝛽𝛽 is zero 

because of the unbiasedness of GREG and independence of 𝑠𝑠∗and 𝑠𝑠. The expansion form of the SI-PREG 

estimator is given by  

 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 = ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 ∑ 𝑦𝑦𝑘𝑘𝑠𝑠∗ , 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 = �1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 (19) 

where 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is ∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘(𝑠𝑠 𝑤𝑤𝑘𝑘 − 1) �∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘2𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ �⁄ , and 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 and 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 are given by (6) and (15), 

respectively. The new set of adjusted weights given by (19) continue to satisfy the GREG calibration 

controls because the corresponding adjusted weights for GREG and S-PREG satisfy the controls in view 

of the fact that residuals 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 become zero when 𝑦𝑦𝑘𝑘 is replaced by one of the covariates from 𝑥𝑥𝑘𝑘. We 

remark that the final weights 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠’s are only defined for the sample 𝑠𝑠 and not for both samples, 

unlike the usual case of combining two probability samples because the second sample 𝑠𝑠∗ being 

purposive has no initial weights for adjustment. Therefore, the SI-PREG is not a true calibration estimator 

in the sense of Deville and Särndal (1992). An estimate of the variance of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 about 𝑇𝑇𝑦𝑦 under the joint 

𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization is given in Appendix A7. 

The above expansion form of SI-PREG is convenient for the univariate case; i.e., when there is only one 

new predictor (∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ) corresponding to the study variable 𝑦𝑦. However, for the multivariate 

extension of SI-PREG when 𝑦𝑦 is multivariate—i.e., for the case of several key study variables—it is of 

interest to produce one set of final adjusted weights. Now we have a vector of new predictors of the form 

(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ) corresponding to each element of 𝑦𝑦. A new SI-PREG estimator can be constructed 

using all the extra predictors for further gains in efficiency. The regression coefficient 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 for the 

nonoptimal combination in the multivariate case will now be replaced by a matrix, each row of which 

consists of non-diagonal elements as covariances with the other study variables corresponding to each of 

the study variables and from which the value 𝑦𝑦𝑘𝑘 of the study variable of interest can be factored out. 

Thus, unlike (19) where 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is not used for factoring out 𝑦𝑦𝑘𝑘, here we take the standard calibration 

approach in constructing a new set of final weights that can be used for all study variables besides the key 

variables already used in defining new predictors of the total model error. 
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In contrast to (19), the above alternative way of constructing the final set of expansion weights amenable 

to the multivariate case is now shown for the univariate case for simplicity. Here, even though the factor 

𝜎𝜎�𝜀𝜀𝜀𝜀2  is common in the numerator and the denominator of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠, we do not cancel it out as its presence in 

the numerator allows for an expansion form of the estimator SI-PREG, somewhat analogous to a 

calibration estimator. To see this, observe that the numerator of 𝜎𝜎�𝜀𝜀𝜀𝜀2  can be alternatively expressed as 

∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 because  

 ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔
2 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1𝑠𝑠 =  ∑ �𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽̂𝛽𝑤𝑤�𝑠𝑠 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 

=  ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1 − 𝛽̂𝛽𝑤𝑤′ ∑ 𝑥𝑥𝑘𝑘𝑠𝑠 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘−1  (20a) 

and the last term with the negative sign is zero as the EFs for 𝛽𝛽 evaluated at 𝛽̂𝛽𝑤𝑤 are zeros. Therefore, the 

value 𝑦𝑦𝑘𝑘 of the study variable of interest can be factored out from the regression coefficient 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 to obtain 

an expansion form of SI-PREG with a different set of adjustment factors 𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠, as shown below. 

  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑔𝑔 = ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠,       𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑘𝑘−1(∑ 𝑤𝑤𝑘𝑘𝑠𝑠 )−1𝜁𝜁𝑠𝑠𝑠𝑠𝑠𝑠  (20b) 

  𝜁𝜁𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 𝜎𝜎�𝜀𝜀𝜀𝜀−2�∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑠𝑠∗ − ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 � (20c) 

We remark that, as desired, the new set of adjusted weights 𝑤𝑤𝑘𝑘𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠’s continue to satisfy the GREG 

calibration controls because ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑐𝑐𝑘𝑘−1 is zero when 𝑦𝑦𝑘𝑘 (not in 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 though) is replaced by one 

of the covariates from 𝑥𝑥𝑘𝑘, and therefore, the contribution from the adjustment in 𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 beyond 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 is 

zero. Here the adjusted weights are only defined for the sample 𝑠𝑠. Extra information from the second 

sample 𝑠𝑠∗ is used in the form of the predictor (∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 ) for regression analogous to the 

predictor (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥) in GREG, and appears in the adjustment factor 𝑎𝑎�𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠. 

We also note that the coefficient 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is expected to be between 0 and 1 because ∑ 𝑐𝑐𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  estimates ∑ 𝑐𝑐𝑘𝑘𝑈𝑈 , 

which is larger than ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ . This property of a convex combination is attractive for ease in interpretation. 

Thus, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 behaves like a shrinkage factor in that high values of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 imply that the design-based predictor 

∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠  is shrunk more to the model-based predictor ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ . In practice, it may be preferable to have 𝜆𝜆𝑠𝑠𝑖𝑖𝑔𝑔 

not more than 1/2 so that GREG can dominate over S-PREG in the SI-PREG formulation in the interest 

of robustness to model misspecifications. However, under general conditions, we have 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 =

𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ ), and 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑂𝑂𝑝𝑝(𝑁𝑁), which imply that 𝜆𝜆𝑠𝑠𝑠𝑠𝑔𝑔 will tend to be close to 1 because 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 is of much 

lower order than 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔. The practical implication of this is clearly not desirable even though S-PREG tends 

to be more efficient than GREG if C1-C4 hold (see Section 5). It is probably better to have only moderate 

gains in efficiency over GREG in the interest of robustness to model misspecifications and selection bias.  
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With the above observation in mind and in the spirit of working variances and covariances used in the 

specification of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 to achieve a certain objective, we first inflate 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 by 𝑁𝑁 𝑛𝑛𝛾𝛾⁄  (0 < 𝛾𝛾 < 1; e.g., 𝛾𝛾 =

1/2) so that the product is 𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛𝛾𝛾⁄ ), with the order being larger than the order of 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔. Next we 

introduce a constraining factor 𝜓𝜓 (between 0 and 1 but bounded away from 0; e.g., greater than .01), 

choice of which is based on other practical considerations mentioned below. This way, 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 → 0 as 

𝑛𝑛,𝑁𝑁 → ∞, which will imply ADC of the new estimator. Therefore, as a modification to SI-PREG, we 

define another estimator termed SI-PREG-constrained (or SI-PREG(c) for short and denoted by 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)) 

as follows: 

SI-PREG(c):  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) = �1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 (21a) 

 = 𝑇𝑇𝑥𝑥′𝛽̂𝛽𝑤𝑤 + ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)(∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 −𝑠𝑠∗ ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 ) (21b) 

where the specification of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) is quite similar to that of 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 by (17), except that 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 in the 

denominator is multiplied by a constraining factor 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)(𝑁𝑁 𝑛𝑛𝛾𝛾)⁄ . That is, 

 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 (⁄ 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 +𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐)(𝑁𝑁 𝑛𝑛𝛾𝛾)⁄ 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠), (22) 

where 0 < 𝛾𝛾 < 1, and 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) is set between 0 and 1 but bounded away from 0 such that SI-PREG(c) has 

a reasonable improvement in precision over GREG but the point estimate itself is not too far off from 

GREG. For this purpose, we follow Efron and Morris’s (1972) suggestion on limiting over-shrinkage of 

empirical Bayes estimators in small area estimation as a guideline. In particular, we propose to choose 

𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) such that it does not make 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) lie outside the interval defined by boundaries 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 ± 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔
1/2, 

where 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 denotes the variance estimate under the model as given in A2. Note that we need 𝜓𝜓𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) away 

from 0 in order to keep SI-PREG(c) not too far from GREG. Now, the expansion form of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) is 

similar to 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 except that in (19), 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 is replaced by 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) defined in an analogous manner. An 

estimate of the variance of 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) about 𝑇𝑇𝑦𝑦 under the joint 𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization can be obtained as in 

Appendix A7 after 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 is substituted by 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐). 

4. An Enhancement of MOD-Integration for Domain 
Estimation 

The method of MOD-I is expected to be especially useful in estimation for small or specialized domains 

that may not be well represented in the full sample, and hence the need for a purposive supplement with 

only a marginal additional cost. A common example of domains in practice is given by socio-
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demographic subgroups that partition the total population U into nonoverlapping subpopulations but are 

not strata, and therefore the sample size for each domain is random. The standard domain estimators using 

GREG are defined by replacing 𝑦𝑦𝑘𝑘 in (6) by 𝑦𝑦𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑  where 𝑈𝑈𝑑𝑑 denotes the dth domain, 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷, and 

D being the total number of domains. Now, in order to improve precision of domain-level GREG, we can 

easily obtain domain-level SI-PREG by modifying (16) and (19) suitably. However, precision of such 

domain-level SI-PREG estimators obtained using the standard theory of domain estimation could be 

improved if we use full sample (i.e., combined sample over all domains) to estimate fixed parameters 

𝛽𝛽,𝜎𝜎𝜀𝜀2, and 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 rather than separately for each domain. In other words, for these parameters, we use the 

same estimators as in the case of regular SI-PREG estimators for population totals and not subpopulations 

or domains, but everywhere else we multiply 𝑦𝑦𝑘𝑘 , 𝑥𝑥𝑘𝑘 (therefore, 𝑒𝑒𝑘𝑘 ) by 1𝑘𝑘∈𝑈𝑈𝑑𝑑 to get their contributions 

only for the domain of interest. It follows that for SI-PREG of domains, although the effective domain 

sample size based on the combined 𝑠𝑠 and 𝑠𝑠∗ remains the same, we could make the resulting estimators 

more stable (and hence more precise) due to less variability in the estimates of fixed parameters 𝛽𝛽,𝜎𝜎𝜀𝜀2, and 

𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 needed for their computation. 

The above enhancement of MOD integration is along the lines of enhancing stability of GREG estimators 

for domains in the context of small area estimation where the full sample estimator 𝛽̂𝛽𝑤𝑤 is used for 

regression parameters (see e.g., Singh and Mian, 1995; Rao, 2003; Section 2.5), but domain-level 

auxiliary totals 𝑇𝑇𝑥𝑥𝑥𝑥 and the domain-level HT-estimator 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥 in the calibration form (6) are used to obtain 

𝑡𝑡𝑦𝑦𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔; i.e., GREG for domain d. (Here for some x-variables, 𝑇𝑇𝑥𝑥𝑥𝑥 could be at the population and not 

subpopulation level.) This increases the computational burden for obtaining more stable domain-level 

GREG estimators in the above manner because the GREG calibration weights will need to be computed 

now for each domain separately, unlike the customary GREG with one set of final weights for all study 

variables. Thus, the proposed enhancement of SI-PREG for domains starts with the enhanced GREG for 

domains and improves it further by integrating it with domain-specific purposive samples. We can now 

define domain-specific estimators GREG(d) and S-PREG(d) in order to define SI-PREG(d) denoted 

respectively by 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑), 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑), and 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) as follows: 

 GREG(d): 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑) = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑)𝑘𝑘∈𝑠𝑠  ,𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑) = 1𝑘𝑘∈𝑈𝑈𝑑𝑑 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑) (23) 

where 𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑) = (𝑋𝑋′𝑊𝑊𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥𝑥𝑥). Note that the GREG(d) calibration weights satisfy the 

domain-specific control totals 𝑇𝑇𝑥𝑥𝑥𝑥. Moreover, unlike the usual GREG for domains, even if 1𝑛𝑛×1 is in the 

column space of 𝐶𝐶−1𝑋𝑋 , the weighted sum of residuals ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠  is no longer zero.  
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S-PREG(d):  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = ∑ 𝑦𝑦𝑘𝑘𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑)𝑠𝑠 +  ∑ 𝑦𝑦𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠∗ ,  

𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1𝜂̂𝜂𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑), 𝜂̂𝜂𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = (𝑋𝑋′𝑊𝑊𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥𝑢𝑢∗) (24) 

The 𝑡𝑡𝑥𝑥𝑥𝑥𝑢𝑢∗ estimator is defined analogous to 𝑡𝑡𝑥𝑥𝑢𝑢∗ except that it uses the domain subsample.  

SI-PREG(d):  𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = ∑ 𝑦𝑦𝑘𝑘𝑠𝑠 𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 ∑ 𝑦𝑦𝑘𝑘1𝑘𝑘∈𝑈𝑈𝑑𝑑𝑠𝑠∗  (25) 

𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = (1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠)𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑) + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑). 

Note that the domain-level control totals 𝑇𝑇𝑥𝑥𝑥𝑥 continue to be satisfied by the SI-PREG(d) expansion 

weights as desired. The SI-PREG(d)-constrained (denoted by SI-PREG(dc)) estimator can be defined in 

an analogous manner by replacing 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 by 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐), common for all domains. Estimates of variance of the 

above estimators about 𝑇𝑇𝑦𝑦𝑦𝑦 can be easily obtained from previous formulas for full population-level 

estimators by replacing 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 by 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔1𝑘𝑘∈𝑈𝑈𝑑𝑑 but retaining full sample estimates for 𝛽𝛽,𝜎𝜎𝜀𝜀2, and 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠. 

5. Bias and Variance Trade-Off in MOD-Integration Methods 

Under the MOD-I approach, the bias and variance of SI-PREG about 𝑇𝑇𝑦𝑦 depends on the bias and variance 

of GREG and S-PREG as estimators of 𝑇𝑇𝑦𝑦. While GREG is ADC and asymptotically design unbiased of 

𝑇𝑇𝑦𝑦 under 𝜋𝜋|𝜉𝜉 and hence under 𝜋𝜋∗𝜋𝜋𝜋𝜋 without requiring any extra conditions, we do need C1 and C2 for 

asymptotic unbiasedness of S-PREG about 𝑇𝑇𝑦𝑦 under 𝜋𝜋∗𝜋𝜋𝜋𝜋. Although GREG’s asymptotic unbiasedness is 

robust to departures from C1 and C2, S-PREG is not, but it tends to be more precise than GREG under C1 

and C2. This can be explained using simplified expressions using the concept of anticipated variances and 

covariances under the additional assumptions of C3 and C4 (see (A2.4) and (A5.3) for anticipated 

variance expressions of GREG and S-PREG, respectively, and Appendix A8). As noted in Section 3, this 

is the property from the efficiency perspective that lends support to allowing GREG to shrink more 

toward S-PREG by letting 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 be close to 1 in the definition of SI-PREG. However, for fear of biases 

(model misspecification or sample selection) that arise if C1 or C2 does not hold, it is preferable to limit 

the shrinkage factor 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠. In this section, we consider the order of magnitude of the relative bias squared 

(i.e., bias squared divided by variance) in order to check the seriousness of the impact of bias on SI-PREG 

under the following two scenarios. 
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Under scenario one where C1 holds but not C2, it follows from (A5.1) that for S-PREG, 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑦𝑦 ≈ 
�∑ 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)  𝑤𝑤𝑘𝑘𝑠𝑠 + ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 �𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)   + 𝜋𝜋𝑘𝑘∗��+  ∑ 𝜀𝜀𝑘𝑘�𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)   + 𝜋𝜋𝑘𝑘∗ − 1�𝑈𝑈 , (26) 

which implies that the asymptotic bias 𝐸𝐸𝝃𝝃�∑ 𝜀𝜀𝑘𝑘�𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)   + 𝜋𝜋𝑘𝑘∗ − 1�𝑈𝑈 � under 𝜋𝜋∗𝜋𝜋𝜋𝜋 is at most 𝑂𝑂(√𝑁𝑁) 

because 𝐸𝐸𝝃𝝃�∑ 𝜀𝜀𝑘𝑘�𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)  − 1�𝑈𝑈 � = 0 as 𝜀𝜀𝑘𝑘 has mean 0 , and 𝐸𝐸𝝃𝝃(∑ 𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘∗𝑈𝑈 ) ≤ 𝑂𝑂(√𝑁𝑁) (see Appendix 

A9) since 𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘∗  does not have mean 0 if C2 fails. The relative bias square is 𝑂𝑂(𝑛𝑛 𝑁𝑁⁄ ) because variance of 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 is 𝑂𝑂(𝑁𝑁2 𝑛𝑛⁄ ). In fact, under an additional mild assumption, 𝐸𝐸𝝃𝝃(∑ 𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘∗𝑈𝑈 ) is only 𝑂𝑂(1), in which 

case the relative bias square is of even lower order. Thus, S-PREG is bias-robust to departures from C2 

since the relative bias squared goes to zero as 𝑛𝑛 𝑁𝑁⁄ → 0 under the given asymptotic framework, where 

𝑛𝑛,𝑁𝑁 → ∞, and 𝑛𝑛∗ remains bounded. It follows that SI-PREG is even less affected by the above bias due 

to the introduction of the shrinkage factor 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠. 

Under scenario two where C1 does not hold, the bias problem gets more serious because the relative bias 

squared does not go to zero. Note that the question of the validity of C2 does not even arise if C1 does not 

hold. When the postulated model mean is not correctly specified, the limit in probability under 𝜋𝜋𝜋𝜋 of 𝛽̂𝛽𝑤𝑤 

is no longer 𝛽𝛽 but some other value to be denoted by 𝛽𝛽�. Also let 𝜀𝜀𝑘̃𝑘 denote the new residual (𝑦𝑦𝑘𝑘 − 𝑥𝑥𝑘𝑘′ 𝛽𝛽�), 

which is not the true residual (𝑦𝑦𝑘𝑘 − 𝜇𝜇𝑘𝑘) (= 𝜀𝜀𝑘𝑘) where 𝜇𝜇𝑘𝑘 is the unknown mean under the true model 𝜉𝜉. 

We now have 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑦𝑦 ≈ 

�∑ 𝜀𝜀𝑘̃𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)  𝑤𝑤𝑘𝑘𝑠𝑠 + ∑ 𝜀𝜀𝑘̃𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘̃𝑘𝑈𝑈 �𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)   + 𝜋𝜋𝑘𝑘∗��+  ∑ 𝜀𝜀𝑘̃𝑘�𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)   + 𝜋𝜋𝑘𝑘∗ − 1�𝑈𝑈 , (27) 

which implies that the bias is 𝑂𝑂(𝑁𝑁) because even 𝐸𝐸𝝃𝝃�∑ 𝜀𝜀𝑘̃𝑘�𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠)  − 1�𝑈𝑈 � ≠ 0. It follows that the 

point estimator S-PREG is not robust to departures from C1 because the relative bias squared is now 

𝑂𝑂(𝑛𝑛).  

The above bias-variance trade-off analysis shows that the violation of C2 is of little consequence for SI-

PREG compared to the violation of C1. In practice, in the absence of any substantive evidence about the 

validity of C1, it is probably safe to limit the contribution of S-PREG in SI-PREG by constraining 𝜆𝜆𝑠𝑠𝑖𝑖𝑔𝑔 to 

𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) as proposed in Section 3. It is also important to develop diagnostics for checking model validity 

analogous to small area estimation using internal and external evaluation (see e.g., Rao, 2003; Section 
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7.1.4). However, diagnostics for unit-level models as is the case here that take the complex design into 

account need to be further developed; see Graubard and Korn (2009) for some innovative ideas. 

6. Summary and Remarks 

In this paper, before dealing with the problem of integrating a purposive supplement 𝑠𝑠∗ to a probability 

sample 𝑠𝑠, a new approach termed MOD-I was first proposed in the case of a single probability sample 𝑠𝑠 

for integrating the two traditional approaches to survey sampling—design-based and model-based. Under 

the joint 𝜋𝜋𝜋𝜋 −randomization, MOD-I starts with a design-based estimator GREG (which being model-

assisted is conducive for integration) and then borrows the prediction idea of the model-based estimator 

PRED to create a new estimator PREG, which is made up of the synthetic part from GREG and the 

random part from PRED but with unweighted GREG residuals. The new estimator PREG as an 

alternative to GREG turns out to be the key for the proposed MOD integration and various MOD-I 

estimators summarized in Table 1. 

Conditions C1 (for validity of the model mean) and C2 for the 𝜋𝜋 −design (for lack of correlation between 

the model error and the selection probability 𝜋𝜋𝑘𝑘 given the auxiliaries) are needed for approximate 

𝜋𝜋𝜋𝜋 −unbiasedness of PREG. Now, without having the burden of accounting for bias, the two estimators 

GREG (which does not require C1 and C2 for its approximate unbiasedness) and PREG can be integrated 

to obtain a more efficient estimator that can be termed “integrated-PREG” or I-PREG. The term 

integration in MOD-I is used to distinguish from the customary term of composition of two estimators 

because it deals with two completely different random mechanisms—one of the estimators is design-

based and the other model-based. In addition, unlike the usual composition, the two estimators GREG and 

PREG have common synthetic parts but different estimates of the random part or the total model error. 

Thus, MOD-I starts with GREG and then improves its prediction of the remainder by using PREG; hence 

the use of the term “model-over-design.” Although the estimators PREG and I-PREG are quite important 

in their own right for improving GREG estimation from a single sample 𝑠𝑠, and for motivating the new 

estimators S-PREG and SI-PREG for integrating 𝑠𝑠∗ with 𝑠𝑠, they were not considered in this paper for 

integrating with the supplement purposive sample. The reason for this was the potential need to enlarge 

the model with the selection probabilities 𝜋𝜋𝑘𝑘’s as a new covariate in order to satisfy C2, which, in turn, 

would require knowledge of 𝜋𝜋𝑘𝑘’s for 𝑠𝑠∗, and this may not be available in practice for all units. 

The question of bias-variance trade-off in SI-PREG was also considered. An interesting finding was that 

unlike PREG, the estimator S-PREG, which uses prediction of model errors based only on 𝑠𝑠∗, is robust to 

failure of C2 for 𝜋𝜋∗ because of bias being negligible under general regularity conditions. In fact, C2 might 
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be deemed to be satisfied for 𝜋𝜋∗due to the design being nature-made unlike the man-made design 𝜋𝜋. 

However, in contrast to the robustness of GREG, failure of C1 introduces a serious bias in S-PREG and 

hence the need of SI-PREG and SI-PREG(c) arises in order to dampen the impact of bias. In practice, for 

the goal of increasing efficiency of GREG using the supplement 𝑠𝑠∗, we clearly need to rely on C1 and be 

willing to trade some bias with higher precision as in small area estimation. However, suitable model 

diagnostics (see, e.g., Graubard and Korn, 2009) should be performed and measure should be taken to 

limit the risk of bias by using SI-PREG(c) which is robust by construction for large 𝑛𝑛 as it shares the 

ADC property of GREG. In approximating the asymptotic variance of SI-PREG, it was observed that all 

the parts of the contributions of the 𝑠𝑠∗ sample involving the design 𝜋𝜋∗can be either neglected relative to 

other higher-order terms or can be approximated in a conservative sense. This turns out to be fortunate for 

our application due to 𝜋𝜋∗being unknown. 

In situations where 𝜋𝜋𝑘𝑘’s happen to be available for 𝑠𝑠∗, and hence can be used as an extra covariate in the 

model, SI-PREG can be further improved by using another estimator to be termed “total-sample 

integrated PREG” (or TI-PREG and denoted by 𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡), which can be defined as follows. In this regard, 

we first define the total-sample PREG (or T-PREG denoted by 𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡) analogous to S-PREG. 

 T-PREG:   𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡 =  𝑇𝑇𝑥𝑥′𝛽̂𝛽𝑤𝑤 +  ∑ 𝑒𝑒𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘∈𝑠𝑠∪𝑠𝑠∗  (28) 

The expansion form of the T-PREG estimator can be obtained as in (15) for S-PREG and its variance as 

in A5. The MOD-I version of T-PREG is given by 

 TI-PREG:  𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡 = �1 − 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡 (29) 

where 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 is defined similar to (17). The expansion form of TI-PREG can be easily obtained along the 

lines of (19) for SI-PREG and its variance as in A7. The constrained version TI-PREG(c) can also be 

defined in a manner similar to SI-PREG(c). Note that in the interest of reducing bias due to failure of C2 

for 𝜋𝜋, we could introduce 𝜋𝜋𝑘𝑘’s in the model as a covariate and then use 𝛽̂𝛽𝑢𝑢 instead of 𝛽̂𝛽𝑤𝑤 in defining T-

PREG. However, use of 𝛽̂𝛽𝑤𝑤 allows for a common 𝛽𝛽 −estimator for GREG and T-PREG needed for 

defining TI-PREG. Now for the case of a single sample 𝑠𝑠, the new estimator I-PREG (which can be 

denoted by 𝑡𝑡𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖) mentioned above can also be easily defined like SI-PREG, except that 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 is 

replaced by 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 and 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 by its natural analogue 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖. 

It was observed that the MOD-I estimators have several useful features such as they continue to satisfy 

GREG calibration controls; have expansion forms, although, strictly speaking, are not quite calibration 
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estimators; can have a multivariate form with several new predictors corresponding to each key study 

variable; and have linearized variance estimators under 𝜋𝜋∗𝜋𝜋𝜋𝜋 −randomization. For the important practical 

application in domain estimation, which is where the integration of 𝑠𝑠 and 𝑠𝑠∗ is likely to be most needed, 

domain-level SI-PREG(d) were defined along the same lines as GREG(d), which is different from the 

usual GREG due to the use of full sample estimates of regression parameters, common for all domains, in 

the interest of stability. The SI-PREG method is expected to have immediate applications to the NORC 

AmeriSpeak initiative, which uses a household panel selected by probability sampling from NORC’s 

National Sample Frame—a large, nationally representative, first phase sample based on a stratified 

multistage unequal probability design. AmeriSpeak households are invited to participate in research 

studies approximately two to three times a month. The probability sample of households in the panel is 

supplemented by nonprobability samples for studies targeting low-incidence subpopulations (see 

www.amerispeak.org for more information). 

It may be of interest to note that although the MOD-I methodology developed in this paper is for 

integrating a purposive supplement 𝑠𝑠∗ with a core probability sample 𝑠𝑠, it does suggest a new approach to 

dealing with a purposive sample 𝑠𝑠∗ alone without the benefit of having a core sample 𝑠𝑠 providing 

information about the same set of study or outcome variables as in 𝑠𝑠∗. Suppose there is an alternative 

probability sample 𝑠̃𝑠 representative of the population or subpopulation of interest for the purposive 

sample with information about the auxiliary variables common with 𝑠𝑠∗ but not about the outcome 

variables of interest. In such situations, a common approach is to attach sampling weights from 𝑠̃𝑠 to the 

purposive sample by matching methods based on propensity scores, where propensity refers to the 

probability that an individual in the population can be selected in 𝑠𝑠∗(treatment group) in contrast to 𝑠̃𝑠 

(control group). As an alternative, S-PREG developed for MOD-I could be used for point estimation that 

requires only sample weighted estimates of regression parameters from 𝑠̃𝑠 and GREG residuals from 𝑠𝑠∗. 

Therefore, we need a suitable value of 𝛽̂𝛽𝑤𝑤 from 𝑠̃𝑠. To this end, we propose a heuristic solution, which, 

however, requires further investigation. First, we obtain 𝛽̂𝛽𝑢𝑢∗ from 𝑠𝑠∗and then compute prediction scores 

(these are just predictive means 𝑥𝑥𝑘𝑘′ 𝛽̂𝛽𝑢𝑢∗) for all units in 𝑠̃𝑠 and 𝑠𝑠∗. Now impute the y-values for all units in 𝑠̃𝑠 

using a method such as predictive mean matching based on prediction scores to find the 𝑦𝑦 −value of the 

matched unit in 𝑠𝑠∗ serving as the donor dataset, which in practice is typically large. The estimate 𝛽̂𝛽𝑢𝑢∗ 

based on 𝑠𝑠∗ is likely to be biased because the model mean may not hold for 𝑠𝑠∗, but they may be deemed 

to be adequate as an initial estimator. Now find a revised estimate 𝛽̂𝛽𝑤𝑤 of 𝛽𝛽 from 𝑠̃𝑠 using imputed 

𝑦𝑦 −values. Next, compute a revised set of prediction scores for all units in 𝑠̃𝑠 and 𝑠𝑠∗ using the current 𝛽̂𝛽𝑤𝑤, 

and repeat the imputation and estimation cycle until convergence. For variance estimation, although the 

usual linearization method seems intractable, we can use a suitable replication method to create replicate 

http://www.amerispeak.org/
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subsamples of 𝑠̃𝑠, and then find the corresponding replicate 𝛽̂𝛽𝑤𝑤 for each subsample. A variance estimate 

can now be obtained easily from S-PREG replicate estimates.  

Finally, we remark that for probability surveys with high nonresponse, the important robustness feature of 

GREG to misspecifications of the (study or outcome) model becomes questionable due to its strong 

dependence on the response model for weight adjustments of the respondent subsample. The reason for 

this is that, like the outcome model 𝜉𝜉, the response model could also be misspecified. If the model 𝜉𝜉 

covariates are identical to the covariates in the response model, and if the response model can be 

approximated well by a linear model, although different from the linear model 𝜉𝜉, then the weight 

adjustment in GREG can be interpreted as a nonresponse adjustment (Folsom and Singh, 2000; Kott, 

2006). Moreover, GREG has double protection against bias in that it is approximately unbiased if either 

outcome model mean does not hold but the response model mean holds or vice-versa (see Kim and Park, 

2006; Kott and Liao, 2015). However, GREG may not have adequate precision. On the other hand, if C1 

and C2 (after introducing 𝜋𝜋𝑘𝑘 as a new covariate) hold, then PRED is attractive due to its unbiasedness 

because it tends to be more efficient and does not, in principle, require selection probabilities under a 

response model. Therefore, with PRED or its related version PREG, we can work directly with the 

respondent subsample without requiring any modeling for nonresponse. However, if C1 is misspecified, it 

could be seriously biased. In such situations, I-PREG(c) may provide a useful efficient alternative to 

GREG and a somewhat robust alternative to PREG. This estimator also needs to be investigated further. 
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Table 1: Summary of Estimators – Old and New (design-based, model-based, MOD-based 
and MOD-integration-based) 

Notation Acronym and Full Form Description 
Old Estimators  

𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 GREG—Generalized Regression Design-based, robust to model 
misspecification 

𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 PRED—Prediction Approach Model-based, optimal under certain 
assumptions, not robust to model failures 

MOD-Estimators (without Integrated Prediction of the Total Model Error) 

𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 PREG—Prediction of Remainder for Efficient 
Generalized Regression 

Uses estimation of the synthetic part as in 
GREG, but estimation of the random part as in 
PRED 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 S-PREG—Supplement Sample PREG Uses estimation of the synthetic part as in 
GREG, but estimation of the random part from 
the supplement sample similar to PRED 

𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡 T-PREG—Total Sample PREG Uses estimation of the synthetic part as in 
GREG but estimation of the random part from 
the total (core and the supplement) sample 
similar to PRED 

MOD-I Estimators (with Integrated Prediction of the Total Model Error)  

𝑡𝑡𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖 I-PREG—Integrated PREG Uses an integration factor for a convex linear 
combination of GREG and PREG 

𝑡𝑡𝑦𝑦,𝑖𝑖𝑖𝑖𝑖𝑖(𝑐𝑐) I-PREG(c)—I-PREG Constrained Constrains the integration factor so that I-
PREG lies within one standard error of GREG 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 SI-PREG—Supplement Sample-Based I-PREG Integrates GREG and S-PREG 

𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑐𝑐) SI-PREG(c)—SI-PREG Constrained Constrains so that SI-PREG lies within one 
standard error of GREG 

𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡 TI-PREG—Total Sample-Based I-PREG Integrates GREG and T-PREG 

𝑡𝑡𝑦𝑦,𝑡𝑡𝑡𝑡𝑡𝑡(𝑐𝑐) TI-PREG(c)—TI-PREG Constrained Constrains so that TI-PREG lies within one 
standard error of GREG 

Note: For domain estimation, use a natural extension (d) of the above notation to obtain, for example, 
𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔(𝑑𝑑), 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑), 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑), and 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑑𝑑). Estimates for fixed parameters (regression coefficients, model 
error variance, and the integration factor) are chosen to be common for all domains in the interest of 
stability of domain-level estimators. 
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Appendix (Technical Results) 

The variance or MSE estimation results presented below are based on conditions C1-C4 and general 

regularity conditions for the asymptotic behavior of HT-type estimators; see, e.g., Fuller (2009, Section 

1.3) and Kott (2009). 

A1: ∑ 𝒆𝒆𝒌𝒌(𝜷𝜷�𝒘𝒘)𝒘𝒘𝒌𝒌𝒔𝒔 = 𝟎𝟎 if 𝟏𝟏𝒏𝒏×𝟏𝟏 is in the column space of 𝑪𝑪−𝟏𝟏𝑿𝑿 

It follows that there exists a 𝑝𝑝 × 1 vector of constants 𝜏𝜏 such that 𝐶𝐶−1𝑋𝑋𝑋𝑋 = 1𝑛𝑛×1, which implies that 

𝑋𝑋𝑋𝑋 = 𝐶𝐶1𝑛𝑛×1. Since 𝛽̂𝛽𝑤𝑤 satisfies 𝑋𝑋′𝐶𝐶−1𝑊𝑊(𝑦𝑦 − 𝑋𝑋𝑋𝑋) = 0, we have 

 𝜏𝜏′𝑋𝑋′𝐶𝐶−1𝑊𝑊�𝑦𝑦 − 𝑋𝑋𝛽̂𝛽𝑤𝑤� = 0 or 1′𝐶𝐶𝐶𝐶−1𝑊𝑊�𝑦𝑦 − 𝑋𝑋𝛽̂𝛽𝑤𝑤� = 0. (A1.1) 

A2: 𝑽𝑽𝑽𝑽𝑽𝑽�𝝅𝝅𝝅𝝅(𝒕𝒕𝒚𝒚,𝒈𝒈𝒈𝒈𝒈𝒈 − 𝑻𝑻𝒚𝒚) or 𝒗𝒗𝒈𝒈𝒈𝒈𝒈𝒈 

By Taylor linearization of 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 about 𝑇𝑇𝑦𝑦 under 𝜋𝜋|𝜉𝜉, we have  

 𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) (A2.1) 

where 𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) (= 1 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) is 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 of (6) but with 𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔(= (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥)) replaced 

by the limit in probability denoted by 𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔, which can be interpreted as a coverage bias model parameter. 

It is 0 if there is no coverage bias, in which case 𝑎𝑎𝑘𝑘(𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔) is 1. However, it helps to improve the variance 

estimator. We have 

 𝑉𝑉𝑉𝑉𝑉𝑉𝜋𝜋𝜋𝜋�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦� =  𝐸𝐸𝜉𝜉𝑉𝑉𝜋𝜋|𝜉𝜉�∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 �+ 𝐸𝐸𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑈𝑈 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 )2. (A2.2) 

The first term on the right can be estimated by standard design-based methods after substitution of 𝛽𝛽 and 

𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔 by 𝛽̂𝛽𝑤𝑤 and 𝜂̂𝜂𝑔𝑔𝑔𝑔𝑔𝑔, and the second term can be estimated by 𝜎𝜎�𝜀𝜀𝜀𝜀2 (∑ �𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘). Thus,  

 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜎𝜎�𝜀𝜀𝜀𝜀2 (∑ �𝑎𝑎𝑘𝑘,𝑔𝑔𝑟𝑟𝑟𝑟 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘)  (A2.3) 

where 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 denotes the design-based estimator 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔𝑤𝑤𝑘𝑘𝑠𝑠 ) and approximates 𝑣𝑣𝑔𝑔𝑔𝑔𝑔𝑔 well because 

the second term is of a much smaller order (𝑂𝑂𝑝𝑝(𝑁𝑁)) than the first term (𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ )). Using the concept of 

anticipated variance, a simple expression 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 assuming 𝜉𝜉 holds for 𝑠𝑠 is obtained as 

 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 ≡  𝑉𝑉𝑉𝑉𝑉𝑉� 𝜉𝜉|𝜋𝜋(𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦)  =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠  (A2.4) 
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where the unknown parameters 𝜎𝜎𝜀𝜀2and ∑ 𝑐𝑐𝑘𝑘𝑈𝑈  in 𝑉𝑉𝑉𝑉𝑉𝑉𝜉𝜉|𝜋𝜋�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦� are estimated under 𝜋𝜋𝜋𝜋 − and 𝜋𝜋|𝜉𝜉 − 

randomization, respectively, and not strictly under 𝜉𝜉|𝜋𝜋. This flexibility is reasonable because 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 

estimates 𝑉𝑉𝑉𝑉𝑉𝑉𝜋𝜋𝜋𝜋�𝑡𝑡𝑦𝑦,𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑇𝑇𝑦𝑦� under the joint randomization using the simplifying assumption of 𝜉𝜉 

holding for 𝑠𝑠. 

A3: 𝑽𝑽𝑽𝑽𝑽𝑽�𝝅𝝅𝝅𝝅(𝒕𝒕𝒚𝒚,𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑻𝑻𝒚𝒚) 𝐨𝐨𝐨𝐨 𝒗𝒗𝒑𝒑𝒑𝒑𝒑𝒑 

We have 

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝) (A3.1) 

where 𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝) (=  1 + 𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 ), and 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 is (𝑁𝑁 𝑛𝑛)⁄  times the limit in probability of (𝑛𝑛 𝑁𝑁)𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝⁄ (=

(𝑛𝑛/𝑁𝑁)(𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥)) under 𝜋𝜋|𝜉𝜉. Analogous to GREG, 

 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝  =  𝑣𝑣�𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜎𝜎�𝜀𝜀𝜀𝜀2 (∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝜋𝜋𝑘𝑘 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘) (A3.2) 

where 𝑣𝑣�𝑝𝑝𝑝𝑝𝑝𝑝 is 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 ). Note that 𝑣𝑣�𝑝𝑝𝑝𝑝𝑝𝑝 like 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 is 𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ ) because although it does not involve 

𝑤𝑤𝑘𝑘’s, the adjustment factor 𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝) itself is 𝑂𝑂𝑝𝑝(𝑁𝑁 𝑛𝑛⁄ ). A simplified estimate under the model is 

obtained as 

 𝑣𝑣��𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠  (A3.3) 

A4: 𝑽𝑽𝑽𝑽𝑽𝑽�𝝅𝝅𝝅𝝅(𝒕𝒕𝒚𝒚,𝒑𝒑𝒑𝒑𝒑𝒑 − 𝑻𝑻𝒚𝒚) ) or 𝒗𝒗𝒑𝒑𝒑𝒑𝒑𝒑 

We have  

 𝑡𝑡𝑦𝑦,𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑘𝑘𝑠𝑠 −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝) (A4.1) 

where  𝑎𝑎𝑘𝑘(𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝) (=  𝜋𝜋𝑘𝑘 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝), and 𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 is the limit in probability of 𝜂̂𝜂𝑝𝑝𝑝𝑝𝑝𝑝(=

(𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥)). We have 

 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑣𝑣�𝑝𝑝𝑝𝑝𝑝𝑝  + 𝜎𝜎�𝜀𝜀𝜀𝜀2 (∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘) (A4.2) 

where 𝑣𝑣�𝑔𝑔𝑔𝑔𝑔𝑔 is given by 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑘𝑘𝑠𝑠 ) and a simplified expression under the model is 

 𝑣𝑣��𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝𝑤𝑤𝑘𝑘 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠  (A4.3) 
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A5: 𝑽𝑽𝑽𝑽𝑽𝑽�𝝅𝝅∗𝝅𝝅𝝅𝝅(𝒕𝒕𝒚𝒚,𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑻𝑻𝒚𝒚) or 𝒗𝒗𝒔𝒔𝒔𝒔𝒔𝒔 

We have 

 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑘𝑘𝑠𝑠 +∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ,    𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜀𝜀𝑘𝑘𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠) (A5.1) 

where 𝑎𝑎𝑘𝑘(𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠) (=  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠), and 𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠 is the limit in probability of 𝜂̂𝜂𝑠𝑠𝑠𝑠𝑠𝑠(= (𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1(𝑇𝑇𝑥𝑥 −

𝑡𝑡𝑥𝑥𝑢𝑢∗)). We have 

 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 − 1�2𝑤𝑤𝑘𝑘𝑠𝑠 𝑐𝑐𝑘𝑘 + 2∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 − 1�𝑐𝑐𝑘𝑘𝑠𝑠∗ + ∑ 𝜋𝜋𝑘𝑘∗𝑐𝑐𝑘𝑘𝑠𝑠∗ ] (A5.2) 

where 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠(= 𝑉𝑉�𝜋𝜋∗𝜋𝜋|𝜉𝜉�∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑘𝑘𝑠𝑠 + ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ �) is the sum of two terms: 𝑉𝑉�𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝∗𝑤𝑤𝑘𝑘)𝑠𝑠 , which is 

obtained using standard design-based methods, and 𝑉𝑉�𝜋𝜋∗|𝜉𝜉(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ ), which can be approximated under the 

replacement PSU assumption (with elementary units as PSUs; Wolter, 2007, pp. 205) as 

(𝑛𝑛∗ (𝑛𝑛∗ − 1))⁄ ∑ (𝜀𝜀𝑘𝑘 − 𝜀𝜀)̅2𝑠𝑠∗  evaluated at 𝛽̂𝛽𝑤𝑤. In fact, the estimate 𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 is quite robust to departures from 

this assumption because the term 𝑉𝑉�𝜋𝜋∗|𝜉𝜉(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ ) has relatively a very small order of 𝑂𝑂𝑝𝑝(𝐸𝐸𝜋𝜋∗(𝑛𝑛∗)). The last 

term in (A5.2) involves unknown 𝜋𝜋𝑘𝑘∗  but can be replaced by a conservative estimate ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ . Also a 

simplified expression under the model is  

 𝑣𝑣��𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ �𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑘𝑘 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ]𝑠𝑠 . (A5.3) 

A6: 𝝀𝝀𝒔𝒔𝒔𝒔𝒔𝒔 = 𝝈𝝈�𝜺𝜺𝜺𝜺𝟐𝟐 (∑ 𝒄𝒄𝒌𝒌𝒘𝒘𝒌𝒌(𝒔𝒔 𝒘𝒘𝒌𝒌 − 𝟏𝟏)) [𝝈𝝈�𝜺𝜺𝜺𝜺𝟐𝟐 �∑ 𝒄𝒄𝒌𝒌𝒘𝒘𝒌𝒌
𝟐𝟐

𝒔𝒔 − ∑ 𝒄𝒄𝒌𝒌𝒔𝒔∗ �⁄ ] 

It follows from the anticipated variance calculation in A2 that 

 𝑉𝑉𝑉𝑉𝑉𝑉� 𝜉𝜉|𝜋𝜋(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) =   𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ 𝑤𝑤𝑘𝑘(𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠  (A6.1) 

 𝑉𝑉𝑉𝑉𝑉𝑉� 𝜉𝜉|𝜋𝜋∗(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ ]𝑠𝑠   (A6.2) 

and 

 𝐸𝐸𝜉𝜉|𝜋𝜋∗𝜋𝜋(∑ 𝜀𝜀𝑘𝑘𝑤𝑤𝑘𝑘𝑠𝑠 − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 )(∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ − ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 ) =  

 𝜎𝜎𝜀𝜀2[∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘 − ∑ 𝑤𝑤𝑘𝑘𝑐𝑐𝑘𝑘𝑠𝑠 − ∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ + ∑ 𝑐𝑐𝑘𝑘𝑈𝑈 ]𝑠𝑠∩𝑠𝑠∗  (A6.3) 

where the last term is zero under 𝐸𝐸𝜋𝜋∗𝜋𝜋 and using independence of 𝜋𝜋 and 𝜋𝜋∗ 

A7: 𝑽𝑽𝑽𝑽𝑽𝑽�𝝅𝝅∗𝝅𝝅𝝅𝝅(𝒕𝒕𝒚𝒚,𝒔𝒔𝒔𝒔𝒔𝒔 − 𝑻𝑻𝒚𝒚) or 𝒗𝒗𝒔𝒔𝒔𝒔𝒔𝒔 

We have 



NORC  |  Estimation from Purposive Supplements to Probability Samples by MOD-I: A Model-Over-Design Integration Approach 

NORC WORKING PAPER SERIES  |  30 

 𝑡𝑡𝑦𝑦,𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑇𝑇𝑦𝑦 ≈ ∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ −  ∑ 𝜀𝜀𝑘𝑘𝑈𝑈 , (A7.1) 

  𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 = 𝜀𝜀𝑘𝑘[�1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎𝑘𝑘�𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔� + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘�𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠�] (A7.2) 

𝑣𝑣𝑠𝑠𝑠𝑠𝑠𝑠 =  𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠 + 

   𝜎𝜎�𝜀𝜀𝜀𝜀2 × 𝑒𝑒𝑒𝑒𝑒𝑒 ∑ ��1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�{𝑎𝑎𝑘𝑘�𝜂𝜂𝑔𝑔𝑔𝑔𝑔𝑔� − 1} + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠{𝑎𝑎𝑘𝑘�𝜂𝜂𝑠𝑠𝑠𝑠𝑠𝑠� − 1} + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝜋𝜋𝑘𝑘∗  �
2

𝑈𝑈 𝑐𝑐𝑘𝑘 (A7.3) 

where 𝑣𝑣�𝑠𝑠𝑠𝑠𝑠𝑠= 𝑉𝑉�𝜋𝜋∗𝜋𝜋|𝜉𝜉(∑ 𝛿𝛿𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠𝑤𝑤𝑘𝑘𝑠𝑠 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠 ∑ 𝜀𝜀𝑘𝑘𝑠𝑠∗ ). The last term in (A7.3) involves unknown 𝜋𝜋𝑘𝑘∗ , but a 

conservative estimate can be used as in A5. Now, a simplified estimate under the model is obtained as  

 𝑣𝑣��𝑠𝑠𝑠𝑠𝑠𝑠 =  𝜎𝜎�𝜀𝜀𝜀𝜀2 [∑ ���1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 + 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑘𝑘,s𝑝𝑝𝑝𝑝�𝑤𝑤𝑘𝑘 − 1�2𝑠𝑠 𝑐𝑐𝑘𝑘 

 + ��1 − 𝜆𝜆𝑠𝑠𝑠𝑠𝑠𝑠�
2 − 1�∑ 𝑐𝑐𝑘𝑘𝑠𝑠∗ + ∑ (𝑤𝑤𝑘𝑘 − 1)𝑐𝑐𝑘𝑘]𝑠𝑠 . (A7.4) 

A8: 𝒗𝒗��𝒔𝒔𝒔𝒔𝒔𝒔 tends to be at most 𝒗𝒗��𝒈𝒈𝒈𝒈𝒈𝒈  if 𝟏𝟏𝒏𝒏×𝟏𝟏 is in the column space of 𝑪𝑪−𝟏𝟏𝑿𝑿 

The above claim will establish heuristically why S-PREG tends to be more efficient than GREG. It is 

possible to show in terms of simplified estimated variance expressions (A5.3) and (A2.4) when the model 

is assumed to hold for 𝑠𝑠 and 𝑠𝑠∗and under the condition that 1𝑛𝑛×1 is in the column space of 𝐶𝐶−1𝑋𝑋. We can 

express 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 alternatively as 

 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠  =  1 + 𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1(𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1{(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗) − 𝑡𝑡𝑥𝑥𝑥𝑥}, (A8.1) 

because 𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1(𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1𝑡𝑡𝑥𝑥𝑥𝑥 = 1 if 1𝑛𝑛×1 is in the column space of 𝐶𝐶−1𝑋𝑋. Comparing the above 

expression of 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠 with 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 of (6), it is easily seen that the sampling weights in S-PREG are being 

adjusted to reduced control totals 𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗  after accounting for the contribution 𝑡𝑡𝑥𝑥𝑢𝑢∗  from 𝑠𝑠∗ toward 𝑇𝑇𝑥𝑥. 

Therefore we expect the adjustments 𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠, which tend to be positive, to be less than 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 in general. 

This establishes feasibility of the above claim by comparing variance estimates (A5.3) and (A2.4). In fact, 

the leading term of order 𝑂𝑂𝑝𝑝(𝑁𝑁2 𝑛𝑛⁄ ) in 𝑣𝑣��𝑠𝑠𝑠𝑠𝑠𝑠 of (A5.3) is 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠�
2

𝑠𝑠 𝑐𝑐𝑘𝑘, which can be shown to at 

most equal to the leading term 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 in 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 of (A2.4) as follows. Letting 𝑋𝑋� denote 

𝐶𝐶−1/2𝑋𝑋, we can express ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 as a sum of quadratic forms; i.e., 



NORC  |  Estimation from Purposive Supplements to Probability Samples by MOD-I: A Model-Over-Design Integration Approach 

NORC WORKING PAPER SERIES  |  31 

 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 =  𝑇𝑇𝑥𝑥′�𝑋𝑋�′𝑊𝑊𝑋𝑋��−1(𝑋𝑋�′𝑊𝑊𝑊𝑊𝑋𝑋�)�𝑋𝑋�′𝑊𝑊𝑋𝑋��−1𝑇𝑇𝑥𝑥 (A8.2a) 

= 𝑡𝑡𝑡𝑡 �𝑊𝑊𝑋𝑋��𝑋𝑋�′𝑊𝑊𝑋𝑋��−1𝑇𝑇𝑥𝑥𝑇𝑇𝑥𝑥′�𝑋𝑋�′𝑊𝑊𝑋𝑋��−1𝑋𝑋�′𝑊𝑊� (A8.2b) 

  =  ∑ 𝑢𝑢𝑘𝑘 ′𝑠𝑠 𝑇𝑇𝑥𝑥𝑇𝑇𝑥𝑥′𝑢𝑢𝑘𝑘 (A8.2c) 

where 𝑢𝑢𝑘𝑘 is the 𝑝𝑝 −vector �𝑋𝑋�′𝑊𝑊𝑋𝑋��−1𝑥𝑥�𝑘𝑘𝑤𝑤𝑘𝑘, and 𝑥𝑥�𝑘𝑘 is the 𝑘𝑘th column of 𝑋𝑋�′. Similarly, we can write 

 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑠𝑠𝑠𝑠𝑠𝑠�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 =  ∑ 𝑢𝑢𝑘𝑘 ′𝑠𝑠 (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗)(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗)′𝑢𝑢𝑘𝑘  (A8.3) 

Now, since 0 ≤ (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗) ≤  𝑇𝑇𝑥𝑥 elementwise, and �𝑇𝑇𝑥𝑥 − (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗)��𝑇𝑇𝑥𝑥 − (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗)�
′ is non-

negative definite, each quadratic form in the sum (A8.3) is less than or equal to the corresponding term in 

(A8.2c). This establishes the desired result. 

Similarly, we can show why PREG tends to be more efficient than GREG. Here, we can express 𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 

alternatively as  

 𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜋𝜋𝑘𝑘 + 1 + 𝑥𝑥𝑘𝑘 ′𝑐𝑐𝑘𝑘−1(𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1{(𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥)− 𝑡𝑡𝑥𝑥𝑥𝑥} (A8.4) 

which along the lines of the argument for S-PREG also tends to be less than 𝜋𝜋𝑘𝑘 +  𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔. Now since the 

contribution of the term 𝜋𝜋𝑘𝑘 in 𝑣𝑣��𝑝𝑝𝑝𝑝𝑝𝑝 is relatively negligible, the desired claim for PREG seems feasible. A 

stronger result about the leading term 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 in 𝑣𝑣��𝑝𝑝𝑝𝑝𝑝𝑝 of (A4.3) can be obtained by using 

an expression analogous to (A8.3) by replacing (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑢𝑢∗) by (𝑇𝑇𝑥𝑥 − 𝑡𝑡𝑥𝑥𝑥𝑥).  

The above claim also applies to PRED though the proof is somewhat different. Given 1𝑛𝑛×1 in the column 

space of 𝐶𝐶−1𝑋𝑋, we have alternate expressions  

 𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝 =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1(𝑋𝑋′𝐶𝐶−1𝑋𝑋)−1𝑇𝑇𝑥𝑥 , and 𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑥𝑥𝑘𝑘 ′ 𝑐𝑐𝑘𝑘−1(𝑋𝑋′𝐶𝐶−1𝑊𝑊𝑊𝑊)−1𝑇𝑇𝑥𝑥  . (A8.5) 

It is sufficient to show that the leading term 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 in (A2.4) of 𝑣𝑣��𝑔𝑔𝑔𝑔𝑔𝑔 is greater than or 

equal to the leading term 𝜎𝜎�𝜀𝜀𝜀𝜀2 ∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 in (A3.3) of 𝑣𝑣��𝑝𝑝𝑝𝑝𝑝𝑝. We have ∑ �𝑤𝑤𝑘𝑘𝑎𝑎𝑘𝑘,𝑔𝑔𝑔𝑔𝑔𝑔�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 =

 𝑇𝑇𝑥𝑥′�𝑋𝑋�′𝑊𝑊𝑋𝑋��−1(𝑋𝑋�′𝑊𝑊𝑊𝑊𝑋𝑋�)�𝑋𝑋�′𝑊𝑊𝑋𝑋��−1𝑇𝑇𝑥𝑥, and ∑ �𝑎𝑎𝑘𝑘,𝑝𝑝𝑝𝑝𝑝𝑝�
2

𝑠𝑠 𝑐𝑐𝑘𝑘 =  𝑇𝑇𝑥𝑥′�𝑋𝑋�′𝑋𝑋��
−1�𝑋𝑋�′𝑋𝑋���𝑋𝑋�′𝑋𝑋��−1𝑇𝑇𝑥𝑥 =

𝑇𝑇𝑥𝑥′�𝑋𝑋�′𝑋𝑋��
−1𝑇𝑇𝑥𝑥. Now, using the multivariate Cauchy-Schwarz inequality, we observe that 

�(𝑊𝑊𝑋𝑋�)′𝑋𝑋��−1�(𝑊𝑊𝑋𝑋�)′𝑊𝑊𝑋𝑋���𝑋𝑋�′(𝑊𝑊𝑋𝑋�)�−1 − �𝑋𝑋�′𝑋𝑋��−1is non-negative definite. Hence, the desired result 

follows.  
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A9: 𝑬𝑬𝝃𝝃(∑ 𝜺𝜺𝒌𝒌𝝅𝝅𝒌𝒌∗𝑼𝑼 ) ≤ 𝑶𝑶(√𝑵𝑵) 

By Cauchy-Schwarz, |∑ 𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘∗|𝑈𝑈 ≤ �∑ 𝜀𝜀𝑘𝑘2𝑈𝑈 �∑ 𝜋𝜋𝑘𝑘∗2𝑈𝑈 , and since ∑ 𝜀𝜀𝑘𝑘2𝑈𝑈 = 𝑂𝑂𝑝𝑝(𝑁𝑁), and ∑ 𝜋𝜋𝑘𝑘∗2𝑈𝑈 ≤ ∑ 𝜋𝜋𝑘𝑘∗𝑈𝑈 = 

𝐸𝐸𝜋𝜋∗(𝑛𝑛∗) which is bounded, we have the desired result. If we make the additional mild assumption that  

(∑ 𝜋𝜋𝑘𝑘∗𝑈𝑈 /𝑁𝑁)−2 ∑ 𝜋𝜋𝑘𝑘∗2𝑈𝑈 𝑁𝑁⁄  is 𝑂𝑂𝑝𝑝(1) where it is known that ∑ 𝜋𝜋𝑘𝑘∗2𝑈𝑈 𝑁𝑁⁄  ≥ (∑ 𝜋𝜋𝑘𝑘∗𝑈𝑈 /𝑁𝑁)2 by Jensen, then we 

have ∑ 𝜋𝜋𝑘𝑘∗2𝑈𝑈 = 𝑂𝑂𝑝𝑝(𝑁𝑁−1) . This in turn implies that 𝐸𝐸𝜉𝜉(∑ 𝜀𝜀𝑘𝑘𝜋𝜋𝑘𝑘∗𝑈𝑈 ) is only 𝑂𝑂(1). 
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