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STATISTICAL AND REGULATORY ISSUES
WITH THE APPLICATION OF PROPENSITY SCORE
ANALYSIS TO NONRANDOMIZED MEDICAL DEVICE
CLINICAL STUDIES

Lilly Q. Yue
CDRH, U.S. Food and Drug Administration, Rockville, MD, USA

Propensity score analysis is a versatile statistical method used mainly in observational
studies for improving treatment comparison by adjusting for up to a relatively large
number of potentially confounding covariates. Recently, there has been an increased
interest in applying this method to nonrandomized medical device clinical studies. In
the application of the methodology, some statistical and regulatory issues arise in both
study design and analysis of study results, such as the need for pre-specifying clinically
relevant covariates to be measured, appropriate patient populations, and the essential
elements of statistical analysis, planning sample size in the context of propensity score
methodology, handling missing covariates in generating propensity scores, and assessing
the success of the propensity score method by evaluating treatment group overlap
in terms of the distributions of propensity scores. In this paper, the advantages and
limitations of this methodology will be revisited, and the above issues will be discussed
and illustrated with examples from a regulatory perspective.
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1. INTRODUCTION

Nonrandomized medical device clinical studies are sometimes conducted when
indeed appropriate. In fact, nonrandomized studies are more common in medical
devices than in drugs and biological products, for practical or ethical reasons. In
such studies, depending on clinical knowledge as well as previous study results,
information on many baseline covariates, for example, baseline demographics and
risk factors, is usually collected. In a nonrandomized study, the advantages of a
well-designed and conducted randomized clinical trial are no longer available. In
a randomized trial, a patient is randomly assigned to either treatment A or B so
that each patient has a known probability of receiving each treatment, avoiding
both obvious and non-obvious clinical selection of patients for one treatment or the
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other. All patient covariates, observed or unobserved, are expected to be balanced,
i.e., nearly equally distributed, between the two treatment groups, which is one
of the most important benefits of randomization. Assumptions underlying many
statistical tests for comparison are met or hold approximately and the observed
treatment difference is an unbiased estimate of true treatment difference (Rubin,
1997). However, the above advantages are not guaranteed in a small or a poorly
designed or conducted randomized trial. In contrast, in a nonrandomized study,
patients are not randomly assigned to treatment A or B; instead, the chance of being
assigned to treatment A rather than treatment B may vary from patient to patient
depending on patient baseline covariates. As a result, the treatment groups might
not be comparable before the start of treatment, due to imbalance of the baseline
covariates, and direct treatment comparison, such as linear or logistic regression,
may not be valid. Therefore, it is necessary to adjust for covariate imbalance
in treatment comparison. To do so, traditional matching and subclassification in
terms of baseline covariates as well as regression (covariate) adjustment could be
used. However, when there are many imbalanced covariates, matching is often
not possible, and likewise subclassification could be impracticable because the
number of subclasses grows exponentially as the number of covariates increases.
Regression analysis may not work due to the problem of over-fitting. It is common
in the area of cardiovascular devices for there to be a relatively large number of
clinically relevant covariates. To address the complicated and common issue, the
propensity score methodology, developed by Rosenbaum and Rubin (1983), can be
used. By replacing the entire collection of covariates with a scalar function that
appropriately summarizes these covariates, the propensity score technique allows the
straightforward assessment whether the treatment groups overlap enough regarding
baseline covariates to allow for a sensible treatment comparison. When sufficient
overlap is present, the methodology allows a straightforward treatment comparison
that reflects adjustment for imbalances in all observed covariates (Braitman and
Rosenbaum, 2002; D’Agostino, 1998; D’Agostino and Rubin, 2000; Rosenbaum
and Rubin, 1983, 1984; Rubin, 1997).

Approximately six years ago, propensity score methods were introduced
to the Center for Devices and Radiological Health (CDRH) at the FDA, and
since then have been recommended in some nonrandomized device studies. Also,
some applications of the methodology have appeared in the medical literature
(Blackstone, 2002; Grunkemeier et al., 2002; Wolfgang et al., 2002). In this paper,
we will revisit the methodology, and discuss statistical issues encountered in its
application, for instance, handling missing baseline covariate values, evaluating
the treatment group comparability, assessing the resulting covariate distribution
balance, and accounting for propensity score adjustment in sample size estimation.
Also, we will point out the limitation of its use and try to provide some
insight into the appropriate application, with two hypothetical examples motivated
by our review experience. We then discuss regulatory requirements when using
the propensity score analysis as primary analysis in medical device submissions.
Finally, we conclude that propensity score methodology can in some cases be a
good alternative to traditional covariate adjustment methods to adjust for many
covariates and reduce bias in treatment comparison. However, it should be noted
that the propensity score methods can only adjust for imbalance in observed
covariates but not in unobserved ones, while randomization tends to balance the
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distribution of all covariates, observed and unobserved. Hence, nonrandomized
studies with propensity score analysis are still inferior to randomized trials in
terms of the level of scientific evidence. Therefore, well-designed and conducted
randomized trials are still preferred and strongly recommended whenever possible,
and the availability of propensity score analysis for nonrandomized studies is not
an excuse for one not to conduct a randomized trial when it is deemed necessary
and feasible.

2. PROPENSITY SCORE ANALYSIS

The propensity score e�x� for a subject with a vector x of observed covariates
is the conditional probability of receiving treatment A �Z = 1� rather than treatment
B �Z = 0� given x:

e�x� = Pr�Z = 1 � x�

Rosenbaum and Rubin (1983) state that the propensity score e�x� is a
balancing score in the sense that it is a function of the observed covariates x
such that the conditional distribution of x given e�x� is the same for subjects
who had received treatment A and subjects who had received treatment B. They
also show that if treatment assignment is strongly ignorable, that is, the treatment
assignment Z and the outcome Y are conditionally independent given the covariates,
x, then the average treatment effect at each value of the propensity score is an
unbiased estimate of the true treatment effect at that propensity score, and therefore,
matching, subclassification and covariate adjustment on the propensity score can
produce unbiased estimates of the treatment effect.

The propensity score is generated by modeling the probability of treatment
group membership, based on the baseline covariates, for example, by a multiple
logistic regression or discriminant analysis. In this statistical modeling, the outcome
is an event: treatment actually received, A or B, and predictor variables include
all observed covariates and some interactions of various orders, e.g., age, gender,
duration of disease,� � � , age ∗ duration,� � � . However, the clinical outcome variable
of interest, such as major complication event, is not involved. The propensity
score model is not used to make any statistical inference concerning treatment
comparison, and is instead employed to find propensity scores which are used to
match patients and therefore create balance between the two treatment groups.
Thus, estimating a propensity score with many terms does not create a problem in
model fitting and does not introduce bias in treatment comparison (Rubin, 1997).

Once the propensity score model is constructed, the propensity score is
estimated for each subject. A group of patients with the same propensity score
are equally likely to have been assigned to treatment A. Within a group of
patients with the same propensity score, some patients actually received treatment
A and some received treatment B, just as if they had been randomly allocated to
whichever treatment they actually received. It is just like “randomized after the fact.”
Therefore, the comparison between the two patients with the same propensity score,
where one received treatment A and the other received treatment B, is expected to be
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balanced with respect to the observed baseline covariates. The above assumes that
unobserved covariates do not affect treatment assignment given observed covariates.

After the propensity score model is constructed and a propensity score is
estimated for each patient, three common covariate adjustment methods based on
propensity scores can be used for treatment comparison: matching, subclassification
and regression. There exist multiple ways to do matching (D’Agostino, 1998) with
“nearest available matching on the estimated propensity score” being the easiest one.
Then, treatment comparison of the clinical outcome Y is based on matched sets
of patients. In subclassification, all patients are ordered based on their propensity
scores, and then divided into 5 or 6 subgroups or strata of approximately equal
size. Within each subclass or stratum, propensity scores are relatively homogeneous;
i.e., all patients have similar probability of receiving treatment A. Rosenbaum
and Rubin (1983, 1984) and Rubin (1997) show that within each subclass, if the
propensity scores are relatively constant, then the distribution of all covariates
should be approximately the same in both treatment groups, and hence the two
treatment groups are comparable. They also state that subclassification on the
propensity score tends to balance all k covariates that are used to estimate the
propensity score, and often five strata based on the propensity score will remove
over 90% of the bias in each of these covariates, if the covariate distributions overlap
sufficiently well. Then, an overall treatment comparison in a clinical outcome can
be obtained by a weighted average of the subgroup-specific treatment comparisons.
However, if study size is small or imbalance is severe, some subclasses may contain
patients from only one treatment group so that the treatment comparison in that
subclass is impossible. In regression (covariate) adjustment, the relationship of
a clinical outcome and treatment received is modeled with estimated propensity
score as a covariate. Also, a subset of original important covariates can be
included in the model. Regression analysis within propensity score subclasses can
sometimes provide a more efficient estimator of treatment effect (D’Agostino, 1998;
Rosenbaum and Rubin, 1983, 1984; Rubin, 1997).

Moreover, Rubin (1997) points out that the propensity score is a one-
dimensional summary of the observed covariates such that when the propensity
scores are balanced across two treatment groups, the distribution of all the
covariates are balanced in expectation across the two groups. Therefore, this
dimension reduction of covariates allows the straightforward assessment of whether
the two treatment groups overlap enough with respect to baseline covariates
to allow a sensible treatment comparison. When such overlap is present, the
propensity score analysis allows a straightforward treatment comparison that
reflects adjustment for differences in all observed baseline covariates.

3. APPLICATION EXAMPLES

Example 1. Suppose that a multicenter, nonconcurrent, two-arm study was
conducted to demonstrate the safety and effectiveness of a new device through
the comparison of the new device to a medical therapy without device. Suppose
that there were 200 patients in the study, among whom about 2/3 received the
experimental device and the others the control treatment. The primary effectiveness
endpoint was treatment success, defined based on pre-specified clinical criteria.
The hypothesis testing for the primary endpoint was superiority in terms of



USING PROPENSITY SCORE TO CLINICAL STUDIES 5

Figure 1 Enrollment time.

treatment success rate. There were about 20% patients with at least one missing
covariate value and 20 imbalanced important baseline covariates, identified at a
significance level 0.05, respectively. Additionally, since medical treatment for the
disease had changed dramatically over the previous decade, the enrollment time
is an important covariate to consider. As it turned out, a majority of control
patients were treated in the early 1990s and, as is shown in Fig. 1, there is
considerable imbalance in the distribution of enrollment time between the two
treatment groups. Due to the above-mentioned imbalances, it was concluded that
the two treatment groups were not comparable, any direct treatment comparisons
on the effectiveness endpoint would be inappropriate, and all p-values from
direct treatment comparisons would be uninterpretable. To attempt to resolve the
problem, propensity score analysis was performed, where the propensity score was
defined as the conditional probability of receiving the device, given a patient’s
baseline covariates.

In order to include all those statistically imbalanced as well as clinically
important baseline covariates in the propensity score model, missing covariate
values were handled by multiple imputations through a Markov Chain Monte Carlo
(MCMC) method. Without imputation, the 20% patients with missing covariate
values would have to be excluded from the propensity score modeling. Sometimes a
single data set for propensity score analysis is generated, which is called generalized
propensity score analysis (D’Agostino and Rubin, 2000).

At the completion of the propensity score modeling, it was noticed that while
the fitted propensity score model predicted the treatment group membership very
well, the distribution of the propensity scores generated by the model in the two
treatment groups may not overlap enough to allow a sensible treatment comparison
(See Figs. 2–3). Of course, the traditional logistic regression analysis might be able to
provide “significant” treatment comparison with different modeling, but the inability
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Figure 2 Estimated propensity scores (with time).

to provide warnings about treatment group comparability in the traditional logistic
regression analysis of a clinical outcome is actually a pitfall, as pointed out by
Rubin (1997). It can be seen that (Fig. 2) with the enrollment time included in
the modeling, there is very little overlap in the distribution of propensity scores
between the treatment and control groups. Excluding the enrollment time from the
propensity score model, the overlap was better but still not satisfactory (Fig. 3).
The treatment group comparability was further evaluated using propensity score

Figure 3 Estimated propensity scores (without time).
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Table 1 Distribution of patients in propensity score quintiles

1 2 3 4 5 Total

with time Ctl 39 19 8 1 0 67
58% 28% 12% 2% 0%

Trt 1 21 33 38 40 133
0% 16% 25% 29% 30%

without time Ctl 30 25 8 4 0 67
45% 37% 12% 6% 0%

Trt 11 14 32 36 40 133
8% 11% 24% 27% 30%

quintiles (Table 1). The fifth quintile contains 30% of the treated patients but does
not contain any control patients to compare with, and the first quintile contains 58%
of the control patients but only 1 treated patient. Although both Cochran-Mantel-
Haenszel test controlling for the propensity score quintile (see Table 2) and logistic
regression using propensity score as a continuous covariate provided statistically
“significant” treatment comparisons, the results were necessarily unreliable, due to
the exclusion of 30% of the treated patients in the Cochran-Mantel-Haenszel test
and the failure of logistic regression analysis to give any warning of the lack of
treatment group comparability. Hence, it was concluded that the two treatment
groups did not overlap sufficiently to allow a sensible treatment comparison,
and therefore any treatment comparisons adjusted for imbalanced covariates were
problematic and all significant p-values were uninterpretable.

Example 2. Suppose that the effectiveness of a new cardiovascular device was
investigated in a nonrandomized noninferiority study through the comparison of the
new device with an active control, using the nine-month major adverse cardiac event
(MACE) rate as the primary endpoint. A noninferiority margin of 10% was pre-
determined with respect to the MACE incidence rate, based on clinical judgment. To
reduce potential bias in the treatment comparison, a propensity score analysis was
pre-specified in the protocol to simultaneously adjust for 15 pre-identified common
baseline demographics and risk factors and baseline lesion characteristics. There
were 800 patients in the study with about 1/3 in the new device group, where
propensity score adjustment was not taken into account in the planning of sample
size. Although it seemed to have worked well in this particular case, sample size
calculation without considering propensity score adjustment could be inappropriate
in other situations.

Table 2 Distribution of treatment success in propensity score
quintiles (with time; S: success, N: sample size)

1 2 3 4 5 Total

N 39 19 8 1 0 67
Ctl S 16 9 1 0 26

N 1 21 33 38 40 133
Trt S 0 14 27 24 23 88
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Table 3 Covariate balance checking before and after propensity
score stratification adjustment

Mean p-value

Covariate New Control Before After

C1 0�25 0�40 <�0001 0�4645
C2 0�28 0�21 0�0421 0�8608
C3 2�41 2�75 0�0003 0�3096
C4 11�02 12�16 <�0001 0�5008
C5 3�00 3�08 0�0202 0�2556
C6 62�75 66�81 <�0001 0�4053

The propensity score was defined as the conditional probability that a patient
would have been assigned to the new device, given the patient’s baseline covariates.
Prior to fitting a propensity score model of the 15 baseline covariates, 6 apparently
imbalanced ones were identified by comparing the two treatment groups (Table 3).
Starting with the main effects of the 15 covariates and all interactions and quadratic
terms of the six apparently imbalanced covariates, a logistic regression model with
a stepwise selection process (0.15 for stay and leave out) was used to build the
propensity score model. The final propensity score model included the main effects
of the six apparently imbalanced covariates as well as a quadratic term. The entire
study population was then divided into propensity score quintiles, with 160 subjects
each. Consistent with the definition of the propensity score, most patients with the
new device were in the quintiles 3, 4, and 5 (Table 4).

After propensity scores have been generated for all the patients, the overlap of
the two treatment groups was evaluated with respect to those propensity scores by
box plots in Fig. 4. By definition, patients with the new device tend to have higher
propensity scores than patients with the control device. Some patients in the new
device group had higher estimated probability of receiving the new device than any
patients in the control group, suggesting that some combinations of covariate values
not appearing in the control group.

Recall that the propensity score method is supposed to simultaneously
balance the covariates between the two treatment groups within each propensity
score quintile stratum/subclass. Checking for balance in those covariates after
stratification is therefore critical, although often not provided in medical device
submissions. In this example, the balance was examined for each of the 15 covariates

Table 4 Distribution of patients at the five propensity score quintiles

Quintile Control New Total

1 135 25 160
2 120 40 160
3 117 43 160
4 113 47 160
5 48 112 160

Total 533 267 800
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Figure 4 Boxplots of the estimated propensity score.

by a two-way analysis of variance model, 2 (treatment groups) × 5 (propensity
score quintiles). The two-way interaction of the treatment and propensity score
quintile was first examined for each covariate. There was only one covariate with
a significant 2-way interaction at the significance level of 0.15, detected by the
two-way ANOVA. The p-value for treatment comparison after adjustment for
propensity score was compared with that before the adjustment. It was found
that after propensity score adjustment, the six previously identified imbalanced
covariates were not significantly different between the two treatment groups at
significance level 0.05 (Table 3). The balance of the six covariates within each
propensity score quintile was also checked using bar chart. For example, Fig. 5

Figure 5 Percentage of patients with covariate C1 in the propensity score quintiles.
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Table 5 Balance check for the percentage of patients with covariate C1

Stratification Treatment Estimate (%)

Before
New 25

Control 40
Control-New 15

After Quintiles

1 2 3 4 5
New 70�4 32�6 25�0 17�6 15�0

Control 75�2 32�8 30�0 24�8 10�4

displays the balance within the propensity score subclasses for the proportion of
patients with covariate C1. While the overall difference between the two treatment
groups on the covariate was 15% before the stratification, the difference was much
smaller within each propensity score subclass (Table 5).

The above results on balance were thought to be satisfactory. But what if
the results were not satisfactory? Rubin (1997) indicates that if important within-
subclass differences between treatment groups had been found on some covariates,
then either the propensity score prediction model would need to be reformulated
or it would have to be concluded that the covariate distributions did not overlap
sufficiently to allow stratification to adjust for these covariates, as is the case in
Example 1.

The directly adjusted nine-month MACE rate estimate obtained from the
subclass-specific rates, with subclass total weights, for the two treatment groups
and a 95% confidence interval estimate of treatment difference, new — control,
were calculated. Compared to the prespecified noninferiority margin, 10%, the
noninferiority of the new device to the control was concluded.

4. LIMITATIONS

Propensity score methods can simultaneously adjust for many imbalanced
covariates and reduce bias in treatment comparison. However, caution is needed
in the application of the methodology, especially in nonrandomized medical device
studies, where the sample size is often relatively small.

Propensity score methods can only adjust for observed covariates and not for
unobserved ones. This is always a limitation of nonrandomized studies compared
with randomized trials where randomization tends to balance both observed and
unobserved covariates. Therefore, some sensitivity analysis for hidden bias is often
desirable in a medical device submission. Propensity score methods may not
eliminate all selection bias, due to the limitation of propensity score modeling,
which typically uses a linear combination of covariates (Rubin, 1997). Braitman and
Rosenbaum (2002) state that the propensity score methods work better under the
three conditions: First, when event is rare, for example, the number of the major
complication events in ablation catheter study is usually small, about 3% or 4%.
Second, there are a large number of patients in each treatment group. Although it is
expected that all observed covariates could be balanced between the two treatment
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groups by propensity scores, in a small nonrandomized study, substantial imbalance
of some covariates might be unavoidable despite the use of a sensible propensity
score. Third, there are many covariates measured. It is seriously degraded when
important variables influencing selection have not been collected.

The propensity score technique is not the only way of adjusting for covariates.
Also, it may or may not be helpful in a particular comparative study (Blackstone,
2002; Grunkemeier et al., 2002; Wolfgang et al., 2002 also in Example 1 above).
Compared to randomized trials which are considered the highest level of evidence
for treatment comparison, nonrandomized studies using propensity score methods
are less rigorous, and therefore not as definitive as randomized trials. Therefore,
although covariates between two treatment groups may be balanced well using
propensity scores, the statistical inference, e.g., p-values and confidence intervals,
obtained from such treatment comparisons may still carry lower level of scientific
assurance, compared to those from randomized trials.

5. SOME STATISTICAL AND REGULATORY ISSUES

In nonrandomized confirmatory medical device studies, propensity score
methodology is an addition to, not a substitute for, more traditional covariate
adjustment methods. If propensity score analysis is selected to be the primary
data analysis, it needs to be planned in advance through the pre-specification of
the methodology, as post-hoc propensity score analysis only provides supporting
evidence. In addition, a number of statistical and regulatory issues need to be
considered in study design stage and final study report.

In the protocol, it is important to prespecify as many as possible clinically
relevant baseline covariates that will be collected in the study and used in the data
analysis, as well as specific propensity score method that will be used, for example,
stratification. Also, sensitivity analysis should be planned for unobserved covariates.

It is crucial to select comparable patient populations, since propensity score
analysis does not work (in fact, no statistical method works) when there is serious
imbalance in baseline covariates between the two treatment groups. It is sometimes
impossible to predict in advance whether the patient population with a new device
is comparable to that with a control, which is a danger with nonrandomized study
and has been a serious issue in nonrandomized device study submissions. In fact, an
unsuccessful nonrandomized study is more burdensome than a randomized trail at
the outset.

It is inappropriate to conduct propensity score analysis when sample size is
small, which could result in some propensity score subclasses that may contain
patients from only one treatment group and then the exclusion of these patients
from the data analysis. Such exclusion of patients should be discouraged as it could
lead to biased treatment comparison.

It is noticed that the propensity score adjustment should be taken into account
in sample size estimation. A fundamental rule of sample size determination is that
the method of sample size estimation should be based on the planned method of
data analysis. It is not hard to imagine that the required sample size in a study
depends on treatment group comparability. However, it is sometimes difficult to
predict in advance and hence hard to make assumptions on the treatment group
comparability.
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In the final study analysis, ignoring missing covariate values has been a
problem in device submissions with propensity score analysis. It is common, for
example, in cardiovascular device studies that a large number of baseline covariates
are measured and collected. This could result in a high proportion of patients
with at least one covariate value missing. Without any action on the missing
covariate values, these patients could be automatically excluded from propensity
score modeling with logistic regression and then from treatment comparison with
respect to clinical outcome. Again, excluding such a large number of patients from
treatment comparison leads to questionable study results.

Furthermore, assessment of the success of the propensity score estimation by
checking the resulting balance of the distributions of covariates and evaluation of
treatment group comparability by the distributions of propensity scores should be
included in the final study report.

6. SUMMARY

Propensity score methodology generalizes the technique that uses just one
confounding covariate to allow simultaneous adjustment for many observed
covariates and thus reduce bias in treatment comparisons. It gives an alternative
to traditional covariate adjustment methods, and especially provides a convenient
way to assess treatment group comparability. However, it should be used wisely
due to its limitations discussed above. Also, in regulatory environment, some special
issues need to be well considered in the study protocol, for example, prespecification
of the methodology along with measurement and inclusion of every important
covariate, appropriate selection of patient populations, and sample size estimation
in the context of propensity scores. In the final study report, missing covariate
imputation, assessment of the success of the propensity score estimation and
evaluation of treatment group comparability should be demonstrated. Moreover,
due to the limitations of observational studies, randomized trials are still preferred
and strongly encouraged whenever possible, especially in the development of new
technology in the medical device world.

ACKNOWLEDGMENTS

The author thanks the Editor-in-Chief of the journal, Dr. Shein-Chung Chow,
for his invitation of the article and Drs. Greg Campbell and Heng Li for their
valuable comments during the preparation of this manuscript.

REFERENCES

Blackstone, E. H. (2002). Comparing apples and oranges. J. Thorac. and Cardiovasc. Surg.
1:8–15.

Braitman, L., Rosenbaum, P. R. (2002). Rare outcomes, common treatments: Analytic
strategies using propensity scores. Ann. Intern. Med. 137:693–696.

D’Agostino, R. B., Jr. (1998). Propensity score methods for bias reduction in the comparison
of a treatment to a nonrandomized control group. Stat. Med. 17:2265–2281.

D’Agostino, R. B., Jr. Rubin, D. B. (2000). Estimating and using propensity scores with
partially missing data. JASA 95:749–759.



USING PROPENSITY SCORE TO CLINICAL STUDIES 13

Grunkemeier, G. L., Payne, N., Jin, R., Handy, J. R., Jr. (2002). Propensity score analysis of
stroke after off-pump coronary artery bypass grafting. Ann. Thorac. Surg. 74:301–305.

Rosenbaum, P. R., Rubin, D. B. (1983). The central role of the propensity score in
observational studies for causal effects. Biometrika 70:41–55.

Rosenbaum, P. R., Rubin, D. B. (1984). Reducing bias in observational studies using
subclassification on the propensity score. JASA 79:516–524.

Rubin, D. B. (1997). Estimating casual effects from large data sets using propensity scores.
Ann. Intern. Med. 127:757–763.

Wolfgang, C., Winkelmayer, W. C., Glynn, R., Mittleman, M., Levin, R., Pliskin, J., Avorn,
J. (2002). Comparing mortality of elder patients on hemodialysis versus peritoneal
dialysis: A propensity score approach. J. Am Soc Nephrol 13:2353–2362.


